-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_face_attr.py
206 lines (183 loc) · 6.55 KB
/
train_face_attr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import argparse
import mlconfig
import torch
import time
import models
import datasets
import losses
import torch.nn.functional as F
import util
import os
import sys
import numpy as np
from exp_mgmt import ExperimentManager
if torch.cuda.is_available():
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
device = torch.device('cuda')
else:
device = torch.device('cpu')
parser = argparse.ArgumentParser(description='CognitiveDistillation')
parser.add_argument('--seed', default=0, type=int)
# Experiment Options
parser.add_argument('--exp_name', default='test_exp', type=str)
parser.add_argument('--exp_path', default='experiments/test', type=str)
parser.add_argument('--exp_config', default='configs/test', type=str)
parser.add_argument('--load_model', action='store_true', default=False)
parser.add_argument('--data_parallel', action='store_true', default=False)
def save_model():
# Save model
exp.save_state(model, 'model_state_dict')
exp.save_state(optimizer, 'optimizer_state_dict')
exp.save_state(scheduler, 'scheduler_state_dict')
@torch.no_grad()
def evaluate(target_model, epoch, loader):
target_model.eval()
# Training Evaluations
loss_meters = util.AverageMeter()
acc_meters = util.AverageMeter()
for i, data in enumerate(loader):
# Prepare batch data
images, labels = data
images = images.to(device, non_blocking=True)
labels = labels.to(device, non_blocking=True)
batch_size = images.shape[0]
logits = model(images)
loss = []
acc = []
for j in range(len(logits)):
loss.append(criterion(logits[j], labels[:, j]))
acc.append(util.accuracy(logits[j], labels[:, j], topk=(1,))[0])
loss = sum(loss).item()
acc = sum(acc) / len(acc)
# Update Meters
loss_meters.update(loss, batch_size)
acc_meters.update(acc, batch_size)
return loss_meters.avg, acc_meters.avg
def train(epoch):
global global_step, best_acc
# Set Meters
loss_meters = util.AverageMeter()
acc_meters = util.AverageMeter()
# Training
model.train()
for i, data in enumerate(train_loader):
start = time.time()
# Prepare batch data
images, labels = data
images = images.to(device, non_blocking=True)
labels = labels.to(device, non_blocking=True)
batch_size = images.shape[0]
model.zero_grad()
optimizer.zero_grad()
# Objective function
logits = model(images)
loss = []
acc = []
for j in range(len(logits)):
loss.append(criterion(logits[j], labels[:, j]))
acc.append(util.accuracy(logits[j], labels[:, j], topk=(1,))[0])
loss = sum(loss)
# Optimize
loss.backward()
optimizer.step()
# Calculate acc
acc = sum(acc) / len(acc)
# Update Meters
loss_meters.update(loss.item(), batch_size)
acc_meters.update(acc, batch_size)
# Log results
end = time.time()
time_used = end - start
if global_step % exp.config.log_frequency == 0:
payload = {
"acc_avg": acc_meters.avg,
"loss_avg": loss_meters.avg,
"lr": optimizer.param_groups[0]['lr']
}
display = util.log_display(epoch=epoch,
global_step=global_step,
time_elapse=time_used,
**payload)
logger.info(display)
# Update Global Step
global_step += 1
def main():
# Set Global Vars
global criterion, model, optimizer, scheduler
global train_loader, test_loader, data
global logger, start_epoch, global_step, best_acc
# Set up Experiments
logger = exp.logger
config = exp.config
# Prepare Data
data = config.dataset(exp)
loader = data.get_loader(train_shuffle=True)
train_loader, test_loader, _ = loader
# Prepare Model
model = config.model().to(device)
optimizer = config.optimizer(model.parameters())
scheduler = config.scheduler(optimizer)
print(model)
# Prepare Objective Loss function
criterion = config.criterion()
start_epoch = 0
global_step = 0
best_acc = 0
# Resume: Load models
if args.load_model:
exp_stats = exp.load_epoch_stats()
start_epoch = exp_stats['epoch'] + 1
global_step = exp_stats['global_step'] + 1
model = exp.load_state(model, 'model_state_dict')
optimizer = exp.load_state(optimizer, 'optimizer_state_dict')
scheduler = exp.load_state(scheduler, 'scheduler_state_dict')
if args.data_parallel:
model = torch.nn.DataParallel(model).to(device)
logger.info("Using torch.nn.DataParallel")
# Train Loops
for epoch in range(start_epoch, exp.config.epochs):
# Epoch Train Func
logger.info("="*20 + "Training Epoch %d" % (epoch) + "="*20)
model.train()
train(epoch)
scheduler.step()
# Epoch Eval Function
logger.info("="*20 + "Eval Epoch %d" % (epoch) + "="*20)
model.eval()
eval_loss, eval_acc = evaluate(model, epoch, test_loader)
if eval_acc > best_acc:
best_acc = eval_acc
payload = 'Eval Loss: %.4f Eval Acc: %.4f Best Acc: %.4f' % \
(eval_loss, eval_acc, best_acc)
logger.info('\033[33m'+payload+'\033[0m')
# Save Model
save_model()
return
if __name__ == '__main__':
global exp
args = parser.parse_args()
torch.manual_seed(args.seed)
# Setup Experiment
config_filename = os.path.join(args.exp_config, args.exp_name+'.yaml')
experiment = ExperimentManager(exp_name=args.exp_name,
exp_path=args.exp_path,
config_file_path=config_filename)
logger = experiment.logger
logger.info("PyTorch Version: %s" % (torch.__version__))
logger.info("Python Version: %s" % (sys.version))
if torch.cuda.is_available():
device_list = [torch.cuda.get_device_name(i)
for i in range(0, torch.cuda.device_count())]
logger.info("GPU List: %s" % (device_list))
for arg in vars(args):
logger.info("%s: %s" % (arg, getattr(args, arg)))
for key in experiment.config:
logger.info("%s: %s" % (key, experiment.config[key]))
start = time.time()
exp = experiment
main()
end = time.time()
cost = (end - start) / 86400
payload = "Running Cost %.2f Days" % cost
logger.info(payload)