-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathanp_defense.py
200 lines (160 loc) · 9.76 KB
/
anp_defense.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from anp_config import get_config, Config
config = get_config()
import os
import traceback
from typing import Dict, Union
import torch
from torch import nn, Tensor
from torch.nn import functional as F
from torchinfo import summary
from torchmetrics import StructuralSimilarityIndexMeasure
from accelerate import Accelerator
from tqdm import tqdm
from diffusers import DDPMPipeline
from model import DiffuserModelSched, batch_sampling
from dataset import DatasetLoader, Backdoor, ImagePathDataset
from loss import p_losses_diffuser, q_sample_diffuser
from anp_util import Config, get_model_optim_sched, get_accelerator, sampling, get_data_loader, init_tracker, save_imgs, update_score_file, log_score
from util import Log
def inspect_model(model: nn.Module):
layers = list(model.children())[:]
for i, layer in enumerate(layers):
print(f"[{i}]: {layer}")
def init_training(config: Config, data_loader, dataset_loader: DatasetLoader):
accelerator = get_accelerator(config=config)
init_tracker(config=config, accelerator=accelerator)
model, perturb_model, optim, noise_sched, lr_sched = get_model_optim_sched(config=config, dataset_loader=dataset_loader)
if lr_sched != None:
perturb_model, optim, data_loader, lr_sched = accelerator.prepare(
perturb_model, optim, data_loader, lr_sched
)
else:
perturb_model, optim, data_loader = accelerator.prepare(
perturb_model, optim, data_loader
)
return accelerator, model, perturb_model, optim, data_loader, noise_sched, lr_sched
def backdoor_mse_fn(noise_sched, model: nn.Module, x_start: torch.Tensor, backdoor_x_start: torch.Tensor, R: torch.Tensor, backdoor_R: torch.Tensor, timesteps: torch.Tensor, noise: torch.Tensor=None, loss_type: str="l2") -> torch.Tensor:
if len(x_start) == 0:
return 0
if noise is None:
noise = torch.randn_like(x_start)
x_noisy, target = q_sample_diffuser(noise_sched=noise_sched, x_start=x_start, R=R, timesteps=timesteps, noise=noise)
backdoor_x_noisy, backdoor_target = q_sample_diffuser(noise_sched=noise_sched, x_start=backdoor_x_start, R=backdoor_R, timesteps=timesteps, noise=noise)
predicted_noise = model(x_noisy.contiguous(), timesteps.contiguous(), return_dict=False)[0]
if loss_type == 'l1':
loss = F.l1_loss(backdoor_target, predicted_noise)
elif loss_type == 'l2':
loss = F.mse_loss(backdoor_target, predicted_noise)
elif loss_type == "huber":
loss = F.smooth_l1_loss(backdoor_target, predicted_noise)
else:
raise NotImplementedError()
return loss
def clip_weight(model, budget: float=None):
if budget == None or budget < 0:
return
lower, upper = -budget, budget
params = [param for name, param in model.named_parameters() if 'bn' in name]
with torch.no_grad():
for param in params:
param.clamp_(lower, upper)
def measure(config: Config, accelerator: Accelerator, pipeline, dataset_loader: DatasetLoader, epoch: int=None):
# Random Number Generator
rng = torch.Generator()
rng.manual_seed(config.seed)
# Get epoch & step
epoch = epoch + 1 if epoch != None else config.epoch
step = dataset_loader.num_batch * epoch
# Save under folder
path = os.path.join(config.measure_dir, f"ep{epoch}")
# Generate Samples and Save
noise = torch.randn(
(config.measure_sample_n, pipeline.unet.in_channels, pipeline.unet.sample_size, pipeline.unet.sample_size),
generator=torch.manual_seed(config.seed),
)
clean_sample_imgs = batch_sampling(sample_n=config.measure_sample_n, pipeline=pipeline, init=noise, rng=rng)
save_imgs(imgs=clean_sample_imgs, file_dir=path, file_name="")
# Load Generated Samples
device = torch.device(config.device_ids[0])
gen_backdoor_target = ImagePathDataset(path=path)[:].to(device)
reps = ([len(gen_backdoor_target)] + ([1] * (len(dataset_loader.target.shape))))
backdoor_target = torch.squeeze((dataset_loader.target.repeat(*reps) / 2 + 0.5).clamp(0, 1)).to(device)
# print(f"gen_backdoor_target: {gen_backdoor_target.shape}, vmax: {torch.max(gen_backdoor_target)}, vmin: {torch.min(backdoor_target)} | backdoor_target: {backdoor_target.shape}, vmax: {torch.max(backdoor_target)}, vmin: {torch.min(backdoor_target)}")
mse_sc = float(nn.MSELoss(reduction='mean')(gen_backdoor_target, backdoor_target))
ssim_sc = float(StructuralSimilarityIndexMeasure(data_range=1.0).to(device)(gen_backdoor_target, backdoor_target))
print(f"[{epoch}] MSE: {mse_sc}, SSIM: {ssim_sc}")
sc = update_score_file(config=config, mse_sc=mse_sc, ssim_sc=ssim_sc, epoch=epoch)
log_score(config=config, accelerator=accelerator, scores=sc, step=step)
return mse_sc, ssim_sc
def train_loop(config: Config, accelerator: Accelerator, model: nn.Module, noise_sched, optim: torch.optim, loader, dataset_loader: DatasetLoader, lr_sched=None, start_epoch: int=0, start_step: int=0):
# try:
cur_step = start_step
epoch = start_epoch
# Test evaluate
# pipeline = DDPMPipeline(unet=accelerator.unwrap_model(model), scheduler=noise_sched)
# sampling(config, 0, pipeline)
# Now you train the model
for epoch in range(int(start_epoch), int(config.epoch)):
progress_bar = tqdm(total=len(loader), disable=not accelerator.is_local_main_process)
progress_bar.set_description(f"Epoch {epoch}")
for step, batch in enumerate(loader):
# memlog.append()
# trigger_images = batch['pixel_values'].to(model.device_ids[0])
# target_images = batch["target"].to(model.device_ids[0])
clean_images = batch['image']
trigger_images = batch['pixel_values']
target_images = batch["target"]
# Sample noise to add to the images
noise = torch.randn(trigger_images.shape).to(trigger_images.device)
bs = trigger_images.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_sched.num_train_timesteps, (bs,), device=trigger_images.device).long()
# Add noise to the clean images according to the noise magnitude at each timestep
# (this is the forward diffusion process)
with accelerator.accumulate(model):
# Predict the noise residual
loss = -p_losses_diffuser(noise_sched, model=model, x_start=clean_images, R=torch.full_like(trigger_images, 0), timesteps=timesteps, noise=noise, loss_type="l2")
accelerator.backward(loss)
# clip_grad_norm_: https://huggingface.co/docs/accelerate/v0.13.2/en/package_reference/accelerator#accelerate.Accelerator.clip_grad_norm_
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), 1.0)
optim.step()
if lr_sched != None:
lr_sched.step()
optim.zero_grad()
clip_weight(model=model, budget=config.perturb_budget)
progress_bar.update(1)
with torch.no_grad():
# backdoor_images = backdoor_ds[:len(trigger_images)]["pixel_values"].to(model.device_ids[0])
# backdoor_targets = backdoor_ds[:len(trigger_images)]["target"].to(model.device_ids[0])
backdoor_mse = backdoor_mse_fn(noise_sched, model=model, x_start=clean_images, backdoor_x_start=target_images, R=torch.full_like(trigger_images, 0), backdoor_R=trigger_images, timesteps=timesteps, noise=noise, loss_type="l2")
logs = {"loss": loss.detach().item(), "backdoor_mse": backdoor_mse.detach().item(), "clean_mse": -loss.detach().item(), "epoch": epoch, "step": cur_step}
if lr_sched != None:
logs["lr"] = lr_sched.get_last_lr()[0]
else:
logs["lr"] = optim.param_groups[0]['lr']
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=cur_step)
cur_step += 1
# After each epoch you optionally sample some demo images with evaluate() and save the model
if accelerator.is_main_process:
pipeline = DDPMPipeline(unet=accelerator.unwrap_model(model), scheduler=noise_sched)
if (epoch + 1) % config.save_image_epochs == 0:
sampling(config, epoch, pipeline)
measure(config=config, accelerator=accelerator, pipeline=pipeline, dataset_loader=dataset_loader, epoch=epoch)
print(Log.info("Save model and sample images"))
pipeline = DDPMPipeline(unet=accelerator.unwrap_model(model), scheduler=noise_sched)
if accelerator.is_main_process:
# checkpoint(config=config, accelerator=accelerator, pipeline=pipeline, cur_epoch=epoch, cur_step=cur_step, repo=repo, commit_msg=f"Epoch {epoch}")
sampling(config, 'final', pipeline)
measure(config=config, accelerator=accelerator, pipeline=pipeline, dataset_loader=dataset_loader, epoch=None)
return pipeline
if __name__ == "__main__":
print(f"PyTorch detected number of availabel devices: {torch.cuda.device_count()}")
dsl, data_loader, backdoor_dsl, backdoor_loader = get_data_loader(config=config)
accelerator, model, perturb_model, optim, data_loader, noise_sched, lr_sched = init_training(config=config, data_loader=data_loader, dataset_loader=dsl)
train_loop(config=config, model=perturb_model, accelerator=accelerator, optim=optim, noise_sched=noise_sched, loader=data_loader, dataset_loader=dsl, lr_sched=lr_sched)
"""
# References
1. [How can l load my best model as a feature extractor/evaluator?](https://discuss.pytorch.org/t/how-can-l-load-my-best-model-as-a-feature-extractor-evaluator/17254/6)
"""