|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "\n", |
| 8 | + "\n", |
| 9 | + "[](https://colab.research.google.com/github/JohnSnowLabs/spark-nlp/blob/master/examples/python/reader/SparkNLP_TXT_Reader_Demo.ipynb)" |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "markdown", |
| 14 | + "metadata": { |
| 15 | + "application/vnd.databricks.v1+cell": { |
| 16 | + "cellMetadata": { |
| 17 | + "byteLimit": 2048000, |
| 18 | + "rowLimit": 10000 |
| 19 | + }, |
| 20 | + "inputWidgets": {}, |
| 21 | + "nuid": "c0efed73-75e9-41f1-9a2e-a2d0953b3a76", |
| 22 | + "showTitle": false, |
| 23 | + "tableResultSettingsMap": {}, |
| 24 | + "title": "" |
| 25 | + }, |
| 26 | + "id": "tzcU5p2gdak9" |
| 27 | + }, |
| 28 | + "source": [ |
| 29 | + "# Introducing TXT reader in SparkNLP\n", |
| 30 | + "This notebook showcases the newly added `sparknlp.read().txt()` method in Spark NLP that parses txt file content from both local files and real-time URLs into a Spark DataFrame." |
| 31 | + ] |
| 32 | + }, |
| 33 | + { |
| 34 | + "cell_type": "markdown", |
| 35 | + "metadata": { |
| 36 | + "application/vnd.databricks.v1+cell": { |
| 37 | + "cellMetadata": { |
| 38 | + "byteLimit": 2048000, |
| 39 | + "rowLimit": 10000 |
| 40 | + }, |
| 41 | + "inputWidgets": {}, |
| 42 | + "nuid": "356de93e-af38-4156-823b-6371d7fd825c", |
| 43 | + "showTitle": false, |
| 44 | + "tableResultSettingsMap": {}, |
| 45 | + "title": "" |
| 46 | + }, |
| 47 | + "id": "RFOFhaEedalB" |
| 48 | + }, |
| 49 | + "source": [ |
| 50 | + "## Setup and Initialization\n", |
| 51 | + "Let's keep in mind a few things before we start 😊\n", |
| 52 | + "\n", |
| 53 | + "Support for reading html files was introduced in Spark NLP 5.6.0. Please make sure you have upgraded to the latest Spark NLP release.\n", |
| 54 | + "\n", |
| 55 | + "- Let's install and setup Spark NLP in Google Colab\n", |
| 56 | + "- This part is pretty easy via our simple script" |
| 57 | + ] |
| 58 | + }, |
| 59 | + { |
| 60 | + "cell_type": "code", |
| 61 | + "execution_count": null, |
| 62 | + "metadata": {}, |
| 63 | + "outputs": [], |
| 64 | + "source": [ |
| 65 | + "! wget -q http://setup.johnsnowlabs.com/colab.sh -O - | bash" |
| 66 | + ] |
| 67 | + }, |
| 68 | + { |
| 69 | + "cell_type": "markdown", |
| 70 | + "metadata": {}, |
| 71 | + "source": [ |
| 72 | + "For local files example we will download a TXT file from Spark NLP Github repo:" |
| 73 | + ] |
| 74 | + }, |
| 75 | + { |
| 76 | + "cell_type": "code", |
| 77 | + "execution_count": 0, |
| 78 | + "metadata": { |
| 79 | + "application/vnd.databricks.v1+cell": { |
| 80 | + "cellMetadata": { |
| 81 | + "byteLimit": 2048000, |
| 82 | + "rowLimit": 10000 |
| 83 | + }, |
| 84 | + "inputWidgets": {}, |
| 85 | + "nuid": "bb622e88-2ef9-49c4-8cfb-e49209ad206a", |
| 86 | + "showTitle": false, |
| 87 | + "tableResultSettingsMap": {}, |
| 88 | + "title": "" |
| 89 | + }, |
| 90 | + "colab": { |
| 91 | + "base_uri": "https://localhost:8080/" |
| 92 | + }, |
| 93 | + "id": "ya8qZe00dalC", |
| 94 | + "outputId": "268ccacb-ba1c-4753-f251-014fb0003f38" |
| 95 | + }, |
| 96 | + "outputs": [], |
| 97 | + "source": [ |
| 98 | + "!mkdir txt-files\n", |
| 99 | + "!wget https://raw.githubusercontent.com/JohnSnowLabs/spark-nlp/master/src/test/resources/reader/txt/simple-text.txt -P txt-files" |
| 100 | + ] |
| 101 | + }, |
| 102 | + { |
| 103 | + "cell_type": "markdown", |
| 104 | + "metadata": { |
| 105 | + "application/vnd.databricks.v1+cell": { |
| 106 | + "cellMetadata": { |
| 107 | + "byteLimit": 2048000, |
| 108 | + "rowLimit": 10000 |
| 109 | + }, |
| 110 | + "inputWidgets": {}, |
| 111 | + "nuid": "13d72e9f-04b4-4547-bc4e-35b3878a93c2", |
| 112 | + "showTitle": false, |
| 113 | + "tableResultSettingsMap": {}, |
| 114 | + "title": "" |
| 115 | + }, |
| 116 | + "id": "EoFI66NAdalE" |
| 117 | + }, |
| 118 | + "source": [ |
| 119 | + "## Parsing text from Local Files\n", |
| 120 | + "Use the `txt()` method to parse text file content from local directories." |
| 121 | + ] |
| 122 | + }, |
| 123 | + { |
| 124 | + "cell_type": "code", |
| 125 | + "execution_count": 0, |
| 126 | + "metadata": { |
| 127 | + "application/vnd.databricks.v1+cell": { |
| 128 | + "cellMetadata": { |
| 129 | + "byteLimit": 2048000, |
| 130 | + "rowLimit": 10000 |
| 131 | + }, |
| 132 | + "inputWidgets": {}, |
| 133 | + "nuid": "df54ed9b-682b-4b99-891a-84c23bc5cbd0", |
| 134 | + "showTitle": false, |
| 135 | + "tableResultSettingsMap": {}, |
| 136 | + "title": "" |
| 137 | + }, |
| 138 | + "colab": { |
| 139 | + "base_uri": "https://localhost:8080/" |
| 140 | + }, |
| 141 | + "id": "bAkMjJ1vdalE", |
| 142 | + "outputId": "a0a2e727-fcc3-474b-eaaa-20bf15f19773" |
| 143 | + }, |
| 144 | + "outputs": [ |
| 145 | + { |
| 146 | + "name": "stdout", |
| 147 | + "output_type": "stream", |
| 148 | + "text": [ |
| 149 | + "Warning::Spark Session already created, some configs may not take.\n", |
| 150 | + "+--------------------+--------------------+--------------------+\n", |
| 151 | + "| path| content| txt|\n", |
| 152 | + "+--------------------+--------------------+--------------------+\n", |
| 153 | + "|dbfs:/danilo/data...|BIG DATA ANALYTIC...|[{Title, BIG DATA...|\n", |
| 154 | + "+--------------------+--------------------+--------------------+\n", |
| 155 | + "\n" |
| 156 | + ] |
| 157 | + } |
| 158 | + ], |
| 159 | + "source": [ |
| 160 | + "import sparknlp\n", |
| 161 | + "txt_df = sparknlp.read().txt(\"dbfs:/danilo/datasets/txt\")\n", |
| 162 | + "\n", |
| 163 | + "txt_df.show()" |
| 164 | + ] |
| 165 | + }, |
| 166 | + { |
| 167 | + "cell_type": "code", |
| 168 | + "execution_count": 0, |
| 169 | + "metadata": { |
| 170 | + "application/vnd.databricks.v1+cell": { |
| 171 | + "cellMetadata": { |
| 172 | + "byteLimit": 2048000, |
| 173 | + "rowLimit": 10000 |
| 174 | + }, |
| 175 | + "inputWidgets": {}, |
| 176 | + "nuid": "9f5c787d-2eab-4546-8001-e34f00124670", |
| 177 | + "showTitle": false, |
| 178 | + "tableResultSettingsMap": {}, |
| 179 | + "title": "" |
| 180 | + }, |
| 181 | + "colab": { |
| 182 | + "base_uri": "https://localhost:8080/" |
| 183 | + }, |
| 184 | + "id": "4iky1gvEz7Pt", |
| 185 | + "outputId": "a986947b-f874-46bc-88c8-093dc42c83cb" |
| 186 | + }, |
| 187 | + "outputs": [ |
| 188 | + { |
| 189 | + "name": "stdout", |
| 190 | + "output_type": "stream", |
| 191 | + "text": [ |
| 192 | + "+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+\n", |
| 193 | + "|txt |\n", |
| 194 | + "+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+\n", |
| 195 | + "|[{Title, BIG DATA ANALYTICS, {paragraph -> 0}}, {NarrativeText, Apache Spark is a fast and general-purpose cluster computing system.\\nIt provides high-level APIs in Java, Scala, Python, and R., {paragraph -> 0}}, {Title, MACHINE LEARNING, {paragraph -> 1}}, {NarrativeText, Spark's MLlib provides scalable machine learning algorithms.\\nIt includes tools for classification, regression, clustering, and more., {paragraph -> 1}}]|\n", |
| 196 | + "+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+\n", |
| 197 | + "\n" |
| 198 | + ] |
| 199 | + } |
| 200 | + ], |
| 201 | + "source": [ |
| 202 | + "txt_df.select(\"txt\").show(truncate=False)" |
| 203 | + ] |
| 204 | + } |
| 205 | + ], |
| 206 | + "metadata": { |
| 207 | + "application/vnd.databricks.v1+notebook": { |
| 208 | + "computePreferences": null, |
| 209 | + "dashboards": [], |
| 210 | + "environmentMetadata": null, |
| 211 | + "language": "python", |
| 212 | + "notebookMetadata": { |
| 213 | + "pythonIndentUnit": 4 |
| 214 | + }, |
| 215 | + "notebookName": "SparkNLP_TXT_Reader_Demo", |
| 216 | + "widgets": {} |
| 217 | + }, |
| 218 | + "colab": { |
| 219 | + "provenance": [] |
| 220 | + }, |
| 221 | + "kernelspec": { |
| 222 | + "display_name": "Python 3 (ipykernel)", |
| 223 | + "language": "python", |
| 224 | + "name": "python3" |
| 225 | + }, |
| 226 | + "language_info": { |
| 227 | + "codemirror_mode": { |
| 228 | + "name": "ipython", |
| 229 | + "version": 3 |
| 230 | + }, |
| 231 | + "file_extension": ".py", |
| 232 | + "mimetype": "text/x-python", |
| 233 | + "name": "python", |
| 234 | + "nbconvert_exporter": "python", |
| 235 | + "pygments_lexer": "ipython3", |
| 236 | + "version": "3.10.12" |
| 237 | + } |
| 238 | + }, |
| 239 | + "nbformat": 4, |
| 240 | + "nbformat_minor": 1 |
| 241 | +} |
0 commit comments