|
1 | 1 | #Methods operating on different special matrix types
|
2 | 2 |
|
| 3 | +#Interconversion between special matrix types |
| 4 | +import Base.convert |
| 5 | +convert{T}(::Type{Bidiagonal}, A::Diagonal{T})=Bidiagonal(A.diag, zeros(T, size(A.diag,1)-1), true) |
| 6 | +convert{T}(::Type{SymTridiagonal}, A::Diagonal{T})=SymTridiagonal(A.diag, zeros(T, size(A.diag,1)-1)) |
| 7 | +convert{T}(::Type{Tridiagonal}, A::Diagonal{T})=Tridiagonal(zeros(T, size(A.diag,1)-1), A.diag, zeros(T, size(A.diag,1)-1)) |
| 8 | +convert(::Type{Triangular}, A::Union(Diagonal, Bidiagonal, SymTridiagonal, Tridiagonal))=Triangular(full(A)) |
| 9 | +convert(::Type{Matrix}, D::Diagonal) = diagm(D.diag) |
| 10 | + |
| 11 | +function convert(::Type{Diagonal}, A::Union(Bidiagonal, SymTridiagonal)) |
| 12 | + all(A.ev .== 0) || throw(ArgumentError("Matrix cannot be represented as Diagonal")) |
| 13 | + Diagonal(A.dv) |
| 14 | +end |
| 15 | + |
| 16 | +function convert(::Type{SymTridiagonal}, A::Bidiagonal) |
| 17 | + all(A.ev .== 0) || throw(ArgumentError("Matrix cannot be represented as SymTridiagonal")) |
| 18 | + SymTridiagonal(A.dv, A.ev) |
| 19 | +end |
| 20 | + |
| 21 | +convert{T}(::Type{Tridiagonal}, A::Bidiagonal{T})=Tridiagonal(A.isupper?zeros(T, size(A.dv,1)-1):A.ev, A.dv, A.isupper?A.ev:zeros(T, size(A.dv,1)-1)) |
| 22 | + |
| 23 | +function convert(::Type{Bidiagonal}, A::SymTridiagonal) |
| 24 | + all(A.ev .== 0) || throw(ArgumentError("Matrix cannot be represented as Bidiagonal")) |
| 25 | + Bidiagonal(A.dv, A.ev, true) |
| 26 | +end |
| 27 | + |
| 28 | +function convert(::Type{Diagonal}, A::Tridiagonal) |
| 29 | + all(A.dl .== 0) && all(A.du .== 0) || throw(ArgumentError("Matrix cannot be represented as Diagonal")) |
| 30 | + Diagonal(A.d) |
| 31 | +end |
| 32 | + |
| 33 | +function convert(::Type{Bidiagonal}, A::Tridiagonal) |
| 34 | + if all(A.dl .== 0) return Bidiagonal(A.d, A.du, true) |
| 35 | + elseif all(A.du .== 0) return Bidiagonal(A.d, A.dl, true) |
| 36 | + else throw(ArgumentError("Matrix cannot be represented as Bidiagonal")) |
| 37 | + end |
| 38 | +end |
| 39 | + |
| 40 | +function convert(::Type{SymTridiagonal}, A::Tridiagonal) |
| 41 | + all(A.dl .== A.du) || throw(ArgumentError("Matrix cannot be represented as SymTridiagonal")) |
| 42 | + SymTridiagonal(A.d, A.dl) |
| 43 | +end |
| 44 | + |
| 45 | +function convert(::Type{Diagonal}, A::Triangular) |
| 46 | + full(A) == diagm(diag(A)) || throw(ArgumentError("Matrix cannot be represented as Diagonal")) |
| 47 | + Diagonal(diag(A)) |
| 48 | +end |
| 49 | + |
| 50 | +function convert(::Type{Bidiagonal}, A::Triangular) |
| 51 | + fA = full(A) |
| 52 | + if fA == diagm(diag(A)) + diagm(diag(fA, 1), 1) |
| 53 | + return Bidiagonal(diag(A), diag(fA,1), true) |
| 54 | + elseif fA == diagm(diag(A)) + diagm(diag(fA, -1), -1) |
| 55 | + return Bidiagonal(diag(A), diag(fA,-1), true) |
| 56 | + else |
| 57 | + throw(ArgumentError("Matrix cannot be represented as Bidiagonal")) |
| 58 | + end |
| 59 | +end |
| 60 | + |
| 61 | +convert(::Type{SymTridiagonal}, A::Triangular) = convert(SymTridiagonal, convert(Tridiagonal, A)) |
| 62 | + |
| 63 | +function convert(::Type{Tridiagonal}, A::Triangular) |
| 64 | + fA = full(A) |
| 65 | + if fA == diagm(diag(A)) + diagm(diag(fA, 1), 1) + diagm(diag(fA, -1), -1) |
| 66 | + return Tridiagonal(diag(fA, -1), diag(A), diag(fA,1)) |
| 67 | + else |
| 68 | + throw(ArgumentError("Matrix cannot be represented as Tridiagonal")) |
| 69 | + end |
| 70 | +end |
| 71 | + |
3 | 72 | #Constructs two method definitions taking into account (assumed) commutativity
|
4 | 73 | # e.g. @commutative f{S,T}(x::S, y::T) = x+y is the same is defining
|
5 | 74 | # f{S,T}(x::S, y::T) = x+y
|
|
0 commit comments