-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathop_counter.py
53 lines (42 loc) · 1.48 KB
/
op_counter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import argparse
from tabulate import tabulate
import torch
import torch.nn as nn
from thop import profile, clever_format
from dassl.config import get_cfg_default
from dassl.engine.trainer import SimpleNet
import models.mobilenetv3
import models.tinynn.tiny_mbv2
import models.tinynn.mcunet
def estimate_size(model):
# https://discuss.pytorch.org/t/finding-model-size/130275/2
param_size = 0
for param in model.parameters():
param_size += param.nelement() * param.element_size()
buffer_size = 0
for buffer in model.buffers():
buffer_size += buffer.nelement() * buffer.element_size()
size_all_mb = (param_size + buffer_size) / 1024**2
return size_all_mb
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--model", type=str, default="mcunet")
parser.add_argument("-r", "--resolution", type=int, default=224)
parser.add_argument("-n", "--num_classes", type=int, default=1000)
args = parser.parse_args()
cfg = get_cfg_default()
cfg.MODEL.BACKBONE.NAME = args.model
model = SimpleNet(cfg, cfg.MODEL, args.num_classes)
print(f"Classes: {args.num_classes:,}")
imsize = args.resolution
print(f"Input size: {imsize}x{imsize}")
input = torch.randn(1, 3, imsize, imsize)
macs, params = profile(model, inputs=(input, ), verbose=False)
macs, params = clever_format([macs, params], "%.2f")
model_size = estimate_size(model)
model_size = f"{model_size:.2f}MB"
table = [
["Params", params],
["Size", model_size],
["MACs", macs]
]
print(tabulate(table))