Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[💡SUG] 能添加diffnet外的其他 图扩散推荐模型吗 #86

Open
StackChan opened this issue Oct 11, 2024 · 0 comments
Open

[💡SUG] 能添加diffnet外的其他 图扩散推荐模型吗 #86

StackChan opened this issue Oct 11, 2024 · 0 comments
Labels
enhancement New feature or request

Comments

@StackChan
Copy link

SIGIR23:Diffusion Recommender Model

这篇文章提出了一种基于扩散模型的推荐系统。传统的推荐系统通常依赖于用户的历史行为数据和内容特征,但在面对稀疏数据时效果不佳。扩散模型通过逐步添加和去噪数据,可以生成高质量的数据样本,有助于缓解数据稀疏问题。
作者设计了一种新的去噪扩散框架,通过在用户-物品交互图中进行扩散过程,逐步生成和去噪用户的潜在兴趣(通用推荐)

WWW24:Denoising Diffusion Recommender Model

本文介绍了一种去噪扩散推荐模型,旨在提高推荐系统的准确性和鲁棒性。传统的推荐系统在处理噪声数据和稀疏数据时常常表现不佳,而扩散模型通过逐步生成和去噪数据,可以有效缓解这些问题。
作者设计了一种新的去噪扩散框架,通过在用户-物品交互图中进行扩散过程,逐步生成和去噪用户的潜在兴趣。实验结果表明,该模型在多个公开数据集上显著提升了推荐性能,特别是在处理噪声和稀疏数据方面表现尤为出色。此外,该方法展示了良好的扩展性和鲁棒性,可以适应不同规模和类型的推荐场景。(通用推荐)

这两类方法代表将来的趋势,希望能被添加到 通用推荐算法中。

@StackChan StackChan added the enhancement New feature or request label Oct 11, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
enhancement New feature or request
Projects
None yet
Development

No branches or pull requests

1 participant