Skip to content

Commit 411a45a

Browse files
authored
Merge pull request #1373 from Sherry-XLL/1.1.x
Fix warnings in docs and modify configuration
2 parents 8c1a151 + 33ec0ec commit 411a45a

File tree

8 files changed

+21
-38
lines changed

8 files changed

+21
-38
lines changed

docs/source/conf.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -20,11 +20,11 @@
2020
# -- Project information -----------------------------------------------------
2121

2222
project = "RecBole"
23-
copyright = "2020, RecBole Contributors"
23+
copyright = "2022, RecBole Contributors"
2424
author = "AIBox RecBole group"
2525

2626
# The full version, including alpha/beta/rc tags
27-
release = "0.2.0"
27+
release = "1.0.1"
2828

2929

3030
# -- General configuration ---------------------------------------------------

docs/source/developer_guide/customize_trainers.rst

+3-3
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,7 @@ and revise :meth:`~recbole.trainer.trainer.Trainer.evaluate` or :meth:`~recbole.
2020
Example
2121
----------------
2222
1. Alternative Optimization
23-
>>>>>>>>>>>>>>>>>>>>>>>>>
23+
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
2424
Here we present a simple Trainer example, which is used for alternative optimization.
2525
We revise the :meth:`~recbole.trainer.trainer.Trainer._train_epoch` method.
2626
To begin with, we need to create a new class for
@@ -105,7 +105,7 @@ Complete Code
105105
return total_loss
106106
107107
2. Mixed precision training
108-
>>>>>>>>>>>>>>>>>>>>>>>>>
108+
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
109109
Here we present a simple Trainer example, which is used for mixed
110110
precision training. Mixed precision training offers significant
111111
computational speedup by performing operations in half-precision
@@ -164,7 +164,7 @@ Complete Code
164164
scaler.update()
165165
166166
3. Layer-specific learning rate
167-
>>>>>>>>>>>>>>>>>>>>>>>>>
167+
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
168168
Here we present a simple Trainer example, which is used for setting
169169
layer-specific learning rate. For pretrained model, layers closer to
170170
the input layer are more likely to have learned more general

docs/source/get_started/distributed_training.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
Distributed Training
2-
===============
2+
=======================
33
Now we support distributed training and evaluation. Here is a distributed training example for using RecBole.
44
We will show you how to train and test **BPR** model on the **ml-100k** dataset in the distributed environment.
55

docs/source/get_started/started/context-aware.rst

+4-12
Original file line numberDiff line numberDiff line change
@@ -1,16 +1,12 @@
11
Quick Start: Context-aware Recommendation
2-
===============
2+
============================================
33
For context-aware recommendation, we choose **LR** model to show you how to
44
train and test it on the **ml-100k** dataset from both **API** and
55
**source code**.
66

7-
.. _header-n3:
8-
97
Quick-start From API
108
---------------------
119

12-
.. _header-n4:
13-
1410
1. Prepare your data:
1511
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
1612

@@ -43,8 +39,6 @@ we set ``rating=4`` as threshold to label the interaction. For more
4339
information about label setting, please read the `Label of
4440
data <https://recbole.io/docs/user_guide/data/label_of_data.html>`__.
4541

46-
.. _header-n9:
47-
4842
2. Choose a model:
4943
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
5044

@@ -66,10 +60,8 @@ If you want to run different models, you can read `Running Different
6660
Models <https://recbole.io/docs/user_guide/usage/running_different_models.html>`__
6761
for more information.
6862

69-
.. _header-n14:
70-
7163
3. Set training and evaluation config:
72-
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
64+
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
7365

7466
In RecBole, we support multiple training and evaluation methods. You can
7567
choose how to train and test model by simply setting the config.
@@ -108,7 +100,7 @@ Settings <https://recbole.io/docs/user_guide/config/evaluation_settings.html>`__
108100
.. _header-n19:
109101

110102
4. Run the model and collect the result
111-
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
103+
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
112104

113105
Now you have finished all the preparations, it’s time to run the model!
114106

@@ -199,7 +191,7 @@ can read other docs for depth usage.
199191
.. _header-n29:
200192

201193
Quick-start From Source
202-
---------------------
194+
-------------------------
203195

204196
Besides using API, you can also directly run the source code of
205197
`RecBole <https://github.com/RUCAIBox/RecBole>`__. The whole process is

docs/source/get_started/started/general.rst

+3-11
Original file line numberDiff line numberDiff line change
@@ -1,16 +1,12 @@
11
Quick Start: General Recommendation
2-
===============
2+
=====================================
33
For general recommendation, we choose **BPR** model to show you how to train
44
and test it on the **ml-100k** dataset from both **API** and **source
55
code**.
66

7-
.. _header-n3:
8-
97
Quick-start From API
108
--------------------------
119

12-
.. _header-n4:
13-
1410
1. Prepare your data:
1511
>>>>>>>>>>>>>>>>>>>>>>>>>
1612

@@ -36,8 +32,6 @@ General recommendation models utilize the historical interactions
3632
between users and items to make recommendations, so it needs to specify
3733
and load the user and item columns of the dataset.
3834

39-
.. _header-n9:
40-
4135
2. Choose a model:
4236
>>>>>>>>>>>>>>>>>>>>>>>>>
4337

@@ -59,10 +53,8 @@ If you want to run different models, you can read `Running Different
5953
Models <https://recbole.io/docs/user_guide/usage/running_different_models.html>`__
6054
for more information.
6155

62-
.. _header-n14:
63-
6456
3. Set training and evaluation config:
65-
>>>>>>>>>>>>>>>>>>>>>>>>>
57+
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
6658

6759
In RecBole, we support multiple training and evaluation methods. You can
6860
choose how to train and test model by simply setting the config.
@@ -101,7 +93,7 @@ Settings <https://recbole.io/docs/user_guide/config/evaluation_settings.html>`__
10193
.. _header-n40:
10294

10395
4. Run the model and collect the result
104-
>>>>>>>>>>>>>>>>>>>>>>>>>
96+
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
10597

10698
Now you have finished all the preparations, it’s time to run the model!
10799

docs/source/get_started/started/knowledge-based.rst

+3-3
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
Quick Start: Knowledge-based Recommendation
2-
===============
2+
=============================================
33
For Knowledge-based Recommendation, we choose **CKE** model to show you how
44
to train and test it on the **ml-100k** dataset from both **API** and
55
**source code**.
@@ -90,7 +90,7 @@ for more information.
9090
.. _header-n164:
9191

9292
3. Set training and evaluation config:
93-
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
93+
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
9494

9595
In RecBole, we support multiple training and evaluation methods. You can
9696
choose how to train and test model by simply setting the config.
@@ -123,7 +123,7 @@ Settings <https://recbole.io/docs/user_guide/config/evaluation_settings.html>`__
123123
.. _header-n269:
124124

125125
4. Run the model and collect the result
126-
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
126+
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
127127

128128
Now you have finished all the preparations, it’s time to run the model!
129129

docs/source/get_started/started/sequential.rst

+3-5
Original file line numberDiff line numberDiff line change
@@ -1,11 +1,9 @@
11
Quick Start: Sequential Recommendation
2-
===============
2+
========================================
33
For sequential recommendation, we choose **GRU4Rec** model to show you how
44
to train and test it on the **ml-100k** dataset from both **API** and
55
**source code**.
66

7-
.. _header-n4:
8-
97
Quick-start From API
108
---------------------
119

@@ -97,7 +95,7 @@ for more information.
9795
.. _header-n16:
9896

9997
3. Set training and evaluation config:
100-
>>>>>>>>>>>>>>>>>>>>>>>>>
98+
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
10199

102100
In RecBole, we support multiple training and evaluation methods. You can
103101
choose how to train and test model by simply setting the config.
@@ -134,7 +132,7 @@ Settings <https://recbole.io/docs/user_guide/config/evaluation_settings.html>`__
134132
.. _header-n21:
135133

136134
4. Run the model and collect the result
137-
>>>>>>>>>>>>>>>>>>>>>>>>>
135+
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
138136

139137
Now you have finished all the preparations, it’s time to run the model!
140138

docs/source/index.rst

+2-1
Original file line numberDiff line numberDiff line change
@@ -89,6 +89,7 @@ Features:
8989
recbole/recbole.utils.logger
9090
recbole/recbole.utils.utils
9191

92+
9293
The Team
9394
------------------
9495
RecBole is developed and maintained by `RUC, BUPT, ECNU <https://www.recbole.io/about.html>`_.
@@ -99,7 +100,7 @@ Here is the list of our lead developers in each development phase. They are the
99100
Time Version Lead Developers
100101
====================== =============== =============================================
101102
June 2020 ~ Nov. 2020 v0.1.1 `Shanlei Mu <https://github.com/ShanleiMu>`_, `Yupeng Hou <https://github.com/hyp1231>`_, `Zihan Lin <https://github.com/linzihan-backforward>`_, `Kaiyuan Li <https://github.com/tsotfsk>`_
102-
Nov. 2020 ~ Now v0.1.2 ~ v1.0.0 `Yushuo Chen <https://github.com/chenyushuo>`_, `Xingyu Pan <https://github.com/2017pxy>`_
103+
Nov. 2020 ~ Now v0.1.2 ~ v1.0.1 `Yushuo Chen <https://github.com/chenyushuo>`_, `Xingyu Pan <https://github.com/2017pxy>`_
103104
====================== =============== =============================================
104105

105106
License

0 commit comments

Comments
 (0)