
BankChain - Final Report
Chainable Technologies

H.G. van de Kuilen
rvandekuilen, 4226151

J.C. Kuijpers
jckuijpers, 4209915

M.R. Kok
mrkok, 4437659

I. Dijcks
idijcks, 4371151

June 2017

Contents
1 Introduction 3

2 Overview 3
2.1 Use cases . 3
2.2 Method . 4
2.3 API for other apps . 4

3 Reflection 4
3.1 Team composition . 4
3.2 Android . 5
3.3 GUI tests . 5
3.4 Working with external parties: Bunq 5
3.5 CI and Android apps . 6

4 Functionalities 6
4.1 Sending challenges . 7
4.2 Verifying challenges . 7
4.3 Viewing transactions . 7

5 Human interaction design 8
5.1 Introduction . 8
5.2 Method . 8
5.3 Results . 9

5.3.1 Improvements to the application 9
5.3.2 Improvements to the instruction sheet 9

5.4 Conclusion . 10

6 Outlook 11

References 13

A Human Computer Interaction study questionnaire template 14

B Human Computer Interaction study instruction sheet 14

2

1 Introduction
One of the largest issues that online interaction currently faces concerns trust.
It is nigh impossible to verify who someone is and that no man-in-the-middle-
attack is taking place. One possible solution to increase trust in other users is
creating a web of trust. This web of trust allows you to build a trust score.
This trust score depends on if other users have announced their trust in you.
The problem is that you need secure methods to announce your trust in another
user, making sure that user is who he says that he is, so you don’t announce
your trust in someone who is spoofing that user. One solution is a face to face
exchange, however that is not always practical.

Our solution uses bank accounts. Controlling a bank account gives an in-
herent form of trust, since it is not trivial to obtain one. One needs to identify
himself and link his name to the account. This makes it unfeasible to open
hundreds of bank accounts automatically or illicitly. These premises allow us
to increase the trust score of someone if he can proof he owns a bank account
with his name attached to it.

Our application allows a user to send a challenge in the description of a bank
transfer. If the other responds to the challenge, signed with his signing key, we
can verify that his key-pair belongs to the same person that has control of the
bank account. This allows you to increase the trust in that user. The bank
account also has a legal name bound to it, which can be used for reference or
other trust methods.

2 Overview
The product as described in the introduction is in fact a proof of concept: can
an app be created that enhances a web of trust using bank transfers with IBAN
addresses? The goal was to create such an app and see what problems occur
and if it is a viable concept.

The requirements of the proof of concept: find a trusted way to verify a
public key and IBAN combination by usig an API from a bank. This goal
has been achieved using the Bunq bank. An optional task was to integrate
our IBAN verification with other project groups. The second group makes
a blockchain, and the third group created a key exchange mechanism using
bluetooth transfers.

2.1 Use cases
The proof of concept we created can be used to enhance the trust in a person
in a web of trust. Our product does not create a web of trust or initiate basic
trust: that is done by other project groups. Our project just increases the trust
when the supplied IBAN can be verified for the public key in the blockchain.
(Our product has a basic storage that mimics a very simple blockchain). The
product is excellent to verify that a trusted person owns (or has access to) given

3

bank account. This way trusted contact info can be collected. A system can
automatically make sure that the right person will receive the money.

2.2 Method
The product is an open source Android app that implements all required func-
tionality, and a basic user interface to demo the backend work.

The app is able to send a create a challenge and send it to a peers bank
account. It is also able to read from its own bank account. From the received
transactions, it can either send a response of a challenge, or act on the received
response: that is, adding more trust to the peer in the blockchain. At every
step, the signatures of challenges, responses, and the bunq API are verified.
It is also possible to do manual challenges: you do the bank-part yourself by
copy-pasting values from and to your own bank app. This allows easier testing
what happens and allows usage of other banks without implementation in the
project. We implemented a simple storage to mimic a blockchain so we can
store that the public key has a verified IBAN.

2.3 API for other apps
Near the end of the project, a fork has been created to make the functional
bits of the project into a library, to be used by the Nervous Fish Game Studio
group. They created the key exchanged using bluetooth. The library, named
BankVer, can be easily implemented by the Nervous Fish group to enhance the
trust they create with their exchange. Sadly, the blockchain group was not
ready to integrate as well, otherwise a full web of trust could have been created.

The API exists of two classes and an interface, easily implementable and
usable with not more than a handful of methods, all documented. It allows syn-
chronizing all challenges and responses, updating the blockchain when needed,
and sending new challenges, either manual or automatic ones.

3 Reflection
Our process was met with hardship very early in the duration of the course.

3.1 Team composition
Early on in the process, communication between one team member and the
rest of the team was not good. Messages were not responded to, the phone
was not picked up. After a short while (about two weeks) the member started
showing up all together. A couple of weeks later the member did not seem to
be participating in the project anymore. Sadly, we had assigned a deliverable
entirely to that person in week two and we did not verify his work. This resulted
in an insufficient mark for the Product Vision. We should have worked on it
together and verified each other instead of relying on a single person. Since then

4

we started reviewing each others work and not assuming what the person said
is actually done is true.

3.2 Android
Android is a well known platform and a lot of apps exist for it, but it was not
easy to get everything up and running with modern APIs. The main cause is
that Java 8 has only been available since Android API 25 (7.1, Noga). Due to
Android fragmentation, just very few devices have 7.1 or heigher (Google, Inc.,
2017a): our development devices did not. So we used Jack to tranform Java
8 code into Java 7 code, and together with Java 8 library fillers we could use
nicer asynchronous code and lambdas. Jack had a lot of issues and support by
Google was discontinued (Google, Inc., 2017b), so we switched to Retrolambda,
which worked faster and better. Build also became faster: from 15 minutes to
30 seconds.

In retrospect we should never have bothered and just go the more messy
way using Async Tasks and Runners. We would have had less problems. We
want it too nice and it cost us a lot of time. The switch to retrolambda was too
late: we should have done it earlier in our process.

3.3 GUI tests
Android GUI tests are a pain to get working right and deterministic. It has not
been easy to make it work properly on all simulators and hardware. If it works
on one device, it does not necesserily work on other devices. The test, that is.
The app works just fine.

In the end we put more time into writing and fixing the tests for non-existend
problems. Whenever tests failed, it was not due to bad code but due to a bad
test. It did not help to improve the product, it only cost a lot of time.

3.4 Working with external parties: Bunq
The Bunq public API, used by our app to do the transactions, is a very new API
(april 2017) and is very unpolished. After a couple of weeks into the project we
also discovered more undocumented limitations and some documenation that
is simply wrong. For example, the documentation on the listing of transaction
states that it is "a listing of all Payments" (bunq B.V., 2017). However, it is
actually limited to the latest ten transactions, as we discovered when we began
using that API.

The biggest limitation of the API is the coupled IP address. When registering
the device with the API (a step in the creation of the session, see our architecture
document), the current IP address is bound to the API key from Bunq. When
the IP addresses of the device changes, the session becomes invalid. This does
not happen when running on a server in a datacenter but is very common on
a phone. When you switch between WiFi and 4G you change IP. We added
code to invalidate keys when the IP address changes. On top of this, the API

5

key is bound to the first IP used. So when your IP changes, you can’t start
a new session with your new IP address: a new API key from the Bunq app
is required. This is a serious showstopper and ended the possibility to use the
Bunq API for the purposes of this app. To get around it, we created an HTTP
proxy server that proxies all requests, so all requests only carry the IP of that
proxy server. This however, is against the terms of services of the Bunq API
and is thus not a viable solution for an actual app in production.

A last limitation we found is that throttling is required on payment creation
API calls because only six payments per six seconds is allowed. A simple syn-
chronization of all challenges makes payments very quickly. This limitation is
not documented either.

It cost a lot of time to find the issues Bunq was reporting and to work around
it.

In retrospect, we should have looked at other banking APIs as well, for
example the Open Banking API specification (TESOBE Ltd., 2017). This is a
specification not in open use currently but can get traction among banks. It
would have given us a more abstract view of what banks require. Our current
bank abstractions are solely based on how Bunq and their API works.

3.5 CI and Android apps
We have had a lot of issues with the Continuous Integration tooling in combina-
tion with Android. Build are non-deterministic, and require a lot of restarting.
The biggest problem is the running of tests on the headerless Android simula-
tor. Installing and starting the simulator takes very long (up to 5 minutes), or
it does not connect correctly at all. We have not been able to get the GUI tests
to work on the CI, so we disabled these on Travis but kept them on our local
machines using some magic with pre-build commands and text replacement.
This is messy and not what we wanted but after four weeks of getting this to
work, we gave up and spent our time on the actual code.

Improvements to this problem could be made by using a system like Jenkins
instead. A system that allows more flexibility and configurability than Travis
CI. However, this takes a lot of time to set up as well. And the builds will
probably still be slow. It is also harder to set up GitHub integration.

Unless Travis-CI improves Android support, or Android improves CI support
(or either), running Android apps on Travis is not worth the time and hassle
that it creates. In retrospect, we probably spent as much time trying to fix
Travis with Android issues as we spent on building the app itself.

4 Functionalities
The aim of this Chapter is to give an overview of the developed functionalities
implemented in our final product.

6

4.1 Sending challenges
On the main screen of our application, there is a blue button that opens a new
screen where the user can start a new verification. By entering the IBAN and
public key of the verifee, a new challenge is created and presented to the user.
The user can now choose to manually send the verification using an external
application, or use the built-in Bunq verification. The display of the activity
is shown in figure 1(a). When the Bunq verification is picked, the application
uses the Bunq key to connect to the Bunq API, and send the message in the
description field of a e0,01 transaction to the selected IBAN.

4.2 Verifying challenges
When the user has received a challenge from another user with an external bank
application, the user can enter the challenge on the main screen to verify that
it is a valid challenge. When the challenge is verified, a response is generated
that can again be manually send with an external application, or automatically
with a built-in Bunq transaction.

4.3 Viewing transactions
It is possible for the user to see the recent transactions that have been made
with the Bunq bank. On the main screen there is a big button that takes the
user to a new screen, where all the recent transactions are nicely presented in
an expandable list. This screen can be seen in figure 1(b).

7

(a) Visual representation of
NewVerification.java

(b) Visual representation of
RecentTransactionsActiv-
ity.java

Figure 1

5 Human interaction design

5.1 Introduction
Our main application is an API so there is no available GUI to test. We did
however also build a version that has a GUI to demo features without being
dependant on other teams. this is the version we decided to test. ideally ev-
erything should be done automatically but for most functions a manual version
is available. We wanted to know how usable these manual features are to an
average user with no prior knowledge of the application. So our research ques-
tion is: What part of completing a manual verification is the most difficult to
perform according to the user?

5.2 Method
Because no prior knowledge can be expected of the user we decided to create
a scenario with instructions that the participant had to follow to navigate the
application. This scenario, as shown in Appendix B contains 3 sections. The
first is to configure the application, the second to create a challenge, and the
third to validate the response received from the challenge. This does have
one downside because we were not only testing your application but also the
clarity of our instructions. To evaluate this result we used 3 methods. The first
was to time every step and see how long it took the user. The second was a
questionnaire, as shown in Appendix A. These questions start off vague to try

8

to get there opinion first before leading into a specific direction. we tried to
evaluate both the application as well as the instructions in order to get a clear
picture where the main problems were. The final way we looked at the results
was by transcribing the events and looking for patterns.

The analysis of our data depends on the specific question some are easily
quantifiable (e.g. rate usability 1-10 or easiest step) other are more difficult.
So for question like "What would you improve?" we decided to look for repeat-
ing answers. We also did the same looking at how our participants used the
application and trying to find common choke points.

5.3 Results
5.3.1 Improvements to the application

The response that we got the most when asked what the tester would improve to
our application, was ’change the settings menu’ and ’make verifying the response
easier’. In the application we used to test, the settings menu is hidden in an
overflow menu on the top-right of the screen. This is standard android practice,
and we noticed that most testers who had trouble with this did not have an
android phone. We also received feedback that hiding a setting in an overflow
menu does not make sense when it is the only option in the menu.
Verifying the response was too difficult because there are also input boxes on the
main screen that are used for verifying a challenge. Most testers got confused
and did not know which input box to use.

5.3.2 Improvements to the instruction sheet

The feedback we received most was that some of the wording on the instruction
sheet did not match with the application. In the instruction sheet (which was
also in Dutch), we used the word ’valideer’. Which corresponded to ’verify’ in
our application. Some testers were confused by this, and took a long time to
find the right buttons.

user Settings Challenge Verification
1 1:32 2:43 2:01
2 0:35 1:43 3:00
3 1:32 3:43 1:50
4 0:34 1:56 1:08
5 0:43 2:11 1:17
6 0:18 1:02 2:38
7 0:40 1:30 2:23
8 0:30 2:10 1:13
9 0:51 1:29 1:41
10 2:20 2:00 2:40
average 00:51 02:03 1:59

9

4 4.5 5 5.5 6 6.5 7 7.5 8

10%

0%

10%

0% 0%

20%

30%

10%

20%

Grade

O
cc

ur
en

ce

Yes No

20%

80%

Has the tester correctly explained what they just did.

O
cc

ur
en

ce

5.4 Conclusion
When looking at the results it is quite clear that the most important step to
remove is the constant copy pasting of information. This part takes too much
time and is quite error prone. We completely agree with this and are trying to
make our application as automated as possible.

However there are other interesting results. we noticed for example that it
took IPhone users a long time to find the settings menu while android users
were used to its location. Another interesting result was that people tried to

10

Step Occurence
Open the BankChain application 2x
Go to settings and enter your private key 4x
Press the blue button and create a new challenge 4x
Verify that the response is correct 2x

Table 1: The steps that our testers found the easiest.

Step Occurence
Go to settings and enter your private key 3x
Enter the public key and iban and create a manual challenge 2x
Copy the response and verify it 2x

Table 2: The steps that our testers found the most difficult.

copy the challenge instead of first pressing the button manual challenge.
Even though it is against standard android practices, we will change the

settings menu to always show in the toolbar. It did not make sense to have the
only option hidden behind a ’more options’ menu. Because we noticed many
testers saying the many input-boxes on the main screen being too confusing,
we decided to group each of them under their own activity. This will make the
main screen much less cluttered, and should lead to a cleaner user experience.
Since we will perform a single HCI study during this project, we will not process
the feedback we got on our instruction sheet.

There are a couple of limitations to our study the first being our participants.
Our participants where all TU Delft students and were relatively tech savvy the
results would probably be completely different if we asked men and women
in their sixties. Another limitation was the scenario itself it contained a few
vague instructions that at times confused the participants. Finally an interesting
result of doing a face to face experiments is that the participants are far to nice
both in trying to get trough the scenario and in answering the questionnaire.
Participants generally don’t like to give insufficient marks.

6 Outlook
We did build a functional application but there is still a lot to improve depending
on how much time there is and what direction we would like to go. The main
problem is that verifying manually is to cumbersome and complicated to be
interesting for ordinary users. Therefore we should aim for complete automation
which means we have to be able to create and read transactions from their bank
accounts. These functionalists are currently not publicly available so if we were
to pursue this we would have to either work together with someone that did
reverse engineer this. or reverse engineer these apps ourselves. The problem is
in both cases that these implementations will probably be shutdown as soon as
the usage starts to increase as it is not wanted by the banks itself. Even Bunq

11

bank, that has a publicly available api has to redone since their api does not
contain enough functionality for practical use. The main issues being their main
issues being linking the api key to specific ip addresses and only returning the
last 10 transactions.

Another way to improve the software is by allowing new public keys to
be added using the challenge response system. At the moment you can only
strengthen existing connections with public keys you already have access to it
might be possible to use a different encoding (e.g. base 64) to increase informa-
tion density so bot the challenge and a public key fit within 140 characters.

These are all ways to improve the bank part of this validation implemen-
tation. Another way might be to increase the possible ways to increase your
trust score e.g. by attaching your key to your twitter account or email address.
The possibilities are endless as long as there is some form off communication
that can only be accessed trough the given account. One problem does arise
when you start to attribute trust because then you have to evaluate how much
a specific connection type adds to the overall trust score.

12

References
bunq B.V. (2017, May 2). Payment. Retrieved June 22, 2017, from https://

doc.bunq.com/api/1/call/payment/method/list
Google, Inc. (2017a, June 21). Dashboard. Retrieved June 22, 2017, from

https://developer.android.com/about/dashboards/index.html
Google, Inc. (2017b, June 22). Jack. Retrieved June 22, 2017, from https://

source.android.com/source/jack
TESOBE Ltd. (2017, June 22). Open bank project. Retrieved June 22, 2017,

from https://openbankproject.com/

13

https://doc.bunq.com/api/1/call/payment/method/list
https://doc.bunq.com/api/1/call/payment/method/list
https://developer.android.com/about/dashboards/index.html
https://source.android.com/source/jack
https://source.android.com/source/jack
https://openbankproject.com/

A Human Computer Interaction study question-
naire template

We asked our test subjects to answer the following questions (in Dutch):
Proefpersoon X <date> (<time>)

• Heb je een android telefoon?

• Weet je wat een public en private key is?

• Wat was je eerste reactie?

• Kan je zelf uitleggen wat je zojuist hebt gedaan / bereikt?

• Moeilijkste stap?

• Makkelijkste stap?

• Wat zou je verbeteren aan de applicatie?

• Wat zou je verbeteren aan het stappenplan?

• Gebruiksvriendelijkheid?

• Zou jij dit een nuttige toevoeging vinden aan je online betalingen?

Opmerkingen

B Human Computer Interaction study instruc-
tion sheet

Kijk in de notitie app voor de private key.

1. Open de bankchain app.

2. Ga naar settings en vul de gegeven private key in.

3. Ga terug naar het hoofdscherm.

De Iban en public key voor een challenge staan in de notitite app.

4. Druk op de blauwe knop en kies voor nieuwe challenge.

5. Vul de gegeven key en Iban in en maak de challenge selecteer hiervoor de
handmatige challenge.

6. Kopieer de challenge naar de notitie app.

De response staat in de notitie.

7. Open in het hoofdmenu de validatie optie.

8. Kopieer de response en valideer deze.

9. Controleer of de response correct is.

14

	Introduction
	Overview
	Use cases
	Method
	API for other apps

	Reflection
	Team composition
	Android
	GUI tests
	Working with external parties: Bunq
	CI and Android apps

	Functionalities
	Sending challenges
	Verifying challenges
	Viewing transactions

	Human interaction design
	Introduction
	Method
	Results
	Improvements to the application
	Improvements to the instruction sheet

	Conclusion

	Outlook
	References
	Human Computer Interaction study questionnaire template
	Human Computer Interaction study instruction sheet

