
1
Introduction

Trust is the bedrock of society. From the evolution of species, global markts all the way to the modern
sharing economy, trust has always had an important impact on almost every aspect of our lives. Trust
is built through previous succesful interaction and the knowledge about those interactions, which we
call reputation. In small communities, knowledge about other is gained through gossiping or personal
experience, but nowadays the internet creates huge, global communities. Protecting and distributing
the knowledge about interactions in the digital world is a tough challenge we are faced with when
designing a global trust system. This work sets an important step towards solving this problem, putting
a scalable, distributed and secure trust system within our reach. This first chapter introduces some key
concepts around trust and expalins the context of this work.

1.1. Theory behind trust and cooperation: Prisoner’s dilemma
We first describe the theoretical basis for trust and it’s relation with cooperation. Trust is often studied
in the context of game theory, especially the game called Prisoner’s dilemma fist described in [6]. The
game describes a dilemma common in many real-world situations, for example the problem of two
partners caught for a crime that are questioned in two separate rooms. Each prisoner has two options,
either deny all allegations, which is more generally called cooperating or betray the partner, which is
called defecting in general game theory. If both stay silent, both will get a sentence of one year. If one
betrays the other, the snitch is set free while the betrayed gets three years in prison. If both betray each
other, they both have to serve two years. When analyzing the game without any additional knowledge
and considering the payoffs for one of the prisoner’s it is always advantageous to betray the other.
Either the other also betrays, in which case two years is better than three, or the other stays silent in
which case betraying sets us free. However, when considering both prisoners’ outcomes together it
would be best for both to stay silent.

While the game is quite simple the implications are far reaching. The game is able to show the
connection between trust and cooperation. If both prisoners trust each other to never betray a partner,
both will cooperate and get a small sentence, the best combined outcome. Yet any mistrust makes both
fail at beating the system. The problem also describes many real world problems, called the tragedy of
the commons. For example, the gobal warming is a problem that can only be solved if all peoples and
all nations cooperate. Yet, the low cost and convenient usability of fossil fuels make it advantageous
to defect and damage the environment. Either the others try to save the environemnt in which case a
single defection will have a small impact, or the other will also damage the environment in which case
a single cooperator will fail anyways. Only, if everyone trusts each other that everyone does the best
they can to save the environment, then it is possible to beat the tragedy of the commons.

1.2. Evolution and cooperation
While cooperating, according to theory, is not necessarily a winning strategy, it is in our nature to do
so, as has been shown by evolution theorists. The theory about competitve natural selection between
individuals and mutation and inheritence of genes was the accepted truth about evolution since Darwin
until in the late 1960s doubts arose about the completeness of this theory. When looking at group
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behavior in species one will find that cooperation is a common theme among related individuals, yet
there is no place for cooperation in the classic Darwin theory [5]. In their work Axelrod and Hamilton
[5] analyze how to combine the seemingly inferior individual’s strategy of cooperating with the goal
to maximize fitness. At the basis of their experiments is a again the Prisoner’s Dilemma. Axelrod and
Hamilton ran experiments on this gamewith multiple rounds instead of only one with different strategies.
They found that if the game is played repeatedly with the possibility of meeting the same partner again
in the future, cooperation between players can be established and be superior. Later research showed
that this direct form of reciprocity, the act of returning a deed, is only one form of cooperation found in
human behavior. Nowak and Martin [16] defined in total five forms in which cooperation can occur: kin
selection, direct reciprocity, indirect reciprocity, network reciprocity and group reciprocity. Conceptually
these forms can be described like this:

• kin selection: we help those that share our genes

• direct reciprocity: I help you, you help me

• indirect reciprocity: I help you, somebody helps me

• network reciprocity: neighbors help each other

• group selection: A group, in which members help each other, survives

Each concept entails at its basis trust. We trust our family, our group, our contrymen, those with
whom we had a lot of shared experiences and those we heard good things about.

1.3. Trust and the economy
Trust also plays a major role in our economic system and has been for the the evolution of economy
as shown in Figure 1.1. In the pre-industrial age, most economy and trade was done in local com-
munities with families that trusted each other over generations and traders that returned year after
year. During industrial and post-industrial age companies have largely replaced local producers and
are trusted by millions of customers based on their brand name. Nowadays, in the information age,
internet companies allow people to connect, trade and cooperate directly, examples being eBay for
trading physical goods, AirBnb for sharing houses and Uber for ride-hailing. How trust and the lack of
it influence trade and markets has been studied in the well-known paper by Akerlof [4]. He describes
the information asymmetry between seller, who knows the quality of the goods which will be sold, and
the buyer, who can only estimate that quality by some market statistic. The seller’s incentive to sell
goods of lesser quality than the average statistic leads to a decreasing statistic and thus price which
in turn decreases the quality of the goods sellers are willing to offer for that lower price. Hence the
market breaks down. Akerlof describes institutions to solve this problem namyly institutions such as
guarantees, brand names and certifications. These are trust inducing institutions and can be general-
ized as reputation systems. If the sellers sell goods to many people and those people report or gossip
the good quality of what they have bought, others can trust those sellers and both seller and buyers
will thrive. On the other hand a bad reputation will lead to a seller getting out of business as buyers will
mistrust. This closes the gap to the work of Nowak as this reputation is what makes indirect reciprocity
possible: the seller is not taking advantage of the buyer’s inconvenient situation but the buyer cannot
directly return that favor. Only by gossipping the event to other potential buyers who are then more
willingly to buy from the seller is the reciprocity circle closed. [16]

1.4. Solution to abuse of Trust: decentralization
These analog, gossip-based reputation systems are what guide our decisions in buying cars, new or
used, at which bank we store our money and at which restaurant we should have dinner. But reputation
systems are also prevalent in the digital world: we make our decisions in buying used goods on eBay,
renting a house to a stranger (or from a stranger), getting into a stranger’s car (what mum told us not to)
based on the reputation of the partner. The sharing economy or collaborative consumption is the rising
star of economic concepts in the information age and it is power by reputation. A company offers a
platform on which the two sides of a trade or transaction can find each other. With each encounter both
parties can rate that interaction and it becomes part of their history. With a longer and more positive
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Figure 1.1: Evolution of the economy

history the value of a profile increases as users see the reputation as security for a good interaction
and are willing to pay for it. However, there are reasons for concern. What if the platform changes
their rules in an almost unacceptable way or abuses the personal data their users have entrusted
them with? Users cannot take their reputation and data to another platform because their reputation
is actually owned by the platform facilitating the trades. Such abuses in which trusted companies act
wrongly have been happening in many times in the past, examples being the dieselgate [1] and the
facebook/cambridge analytica scandals. [2] These scandals show that eventhough millions of users
trust them, central institutions do not neccessarily serve their customers or clients.

We envision a future in which collaborative consumption is possible without any intermediator. This
future requires a reputation system which is application agnostic, owned by noone and ruled by ev-
eryone. A distributed reputation system as a layer directly on top of the internet. However this poses
some challenges from a technical point of view. Distributed system are intrinsically hard to control and
regulate, which is both blessing and curse. No party can impose unfair rules on other users but it is also
hard to prevent malicious users from sending wrong information across the network. [10] reviews state-
of-the-art reputation systems and finds that all commercial reputation systems are centralized. Some
of the scientific reputation systems are decentralized like EigenTrust [12], P-Grid [3] and RateWeb [13],
yet they have not been proven to work in settings where high throughput, global scaling are required
which is the case for a global reputation system. Distributed, secure and globally scalable systems
remain an unsolved problem.

1.5. TrustChaina and Tribler
Old: needs to be extended This report is related to research done at the Blockchain Lab at TU Delft,
whose ambition it is to be the first to create a global trust system. In many years of research multiple
milestones have been reached. In [14] we have solved the free-riding problem in the peer-to-peer
file-sharing context with a reputation system that tracks uploads and downloads. With TrustChain [17]
we have created our own blockchain fabric for bandwidth as a currency which builds on the previous
work and adds tamper-proof recording and immutable history to the reputation system. All work is
implemented in Tribler, a BitTorrent client with Tor-like layered anonymity. The implementation allows
for testing of research ideas with real users in production environments.

1.6. Contribution
Old: needs to be improved This work specifically will be concerned with the agreement on reputation
in the network and closely related to that the dissemination of records of interactions. We will enlarge
on the problem description in the next chapter. Afterwards the problem will be defined formally and
analyzed in the bounds of the definition. Before proposing a solution, some existing approaches for
recording and dissemination of data will be discussed in chapter. Next, we define a solution based on
the TU Delft blockchain fabric TrustChain and propose a specific mechanism of using such a fabric.
Finally, we prove the correctness and scalability properties of the fabric in experimental analysis, before
concluding and making suggestions for further research.





2
Problem description

In the introduction we have made a case for our audacious ambition to design and create a layer of
reputation on top of the core infrastructure of the internet that enables application agnostic trustful
relationships between relative strangers. This requires a distributed, scalable reputation system.

2.1. Requirements of reputation systems
Reputation systems appear in many forms but we are concerned with their digital form as only digital
networks can reach global scale with fast information distribution. Reputation systems have previously
been formally defined to include at least three components [20]:

• Long-lived identities

• Recording and distribution of feedback about interactions

• Use of feedback to guide interactions

We need entities to be identifiable and in existence for a long time to ensure that future interactions
between known entities are likely. If changing of identities is easy, a bad reputation is easily discarded
and exchanged for a clean slate. We need to capture and distribute feedback of interacitons such that
entities are aware of the history and reputation of other entities on the system. Finally, users should
actually make use of the feedback on not just ignore it.

2.2. Requirements of global trust system
Next to the requirements of reputation systems we also have requirements for specific usecase of a
global reputation system without centralized institutations.

• distributed: no entity should be owner of the reputation of all people, no single point of failure
should exist

• scalable: future applications similar to those that exist today with centralized reputation systems
should be able to handle billions of users.

• robust against strategic manipulation: once reputation increases in worth users of the system will
try to exploit the system by attacking it, alone or by colluding and the architecture needs to be
robust against such attacks

This introduces additional challenges: enforcing long-lived identities is even harder without the
assumption of a trusted central entity that can check the validity of new entities. Also creating a central
distributed record with synchronization at scale is a topic of ongoing research and generally seen as
an unsolved problem. Finally, reputation system in general and distributed systems specifically are
intrinsically weak in protection against malicious behavior, although they are robust in terms of complete
failures as no single point of failure exists.

5



6 2. Problem description

2.3. System architecture
As of today, no single algorithm or architecture can provide a solution that conforms with all these
requirements. Only by combining multiple components and iterating their design can we approach
a reputation layer that is able to conform with the requirements. This layer needs to combine these
components:

Identity. At the lowest level there is the identity layer that ensures an entity is identifiable for other
entities in the network. The most basic version of this is a simple public- private key pair for signing
and encrypting data. But creating a new key pair is cheap, therefore this is not enough and in a later
iteration of this identity system digital entities will need to be bound to real-world, verified entites like
government-issued passports or biometric identifiers.

Communication. The internet creates a global communication network with high connectivity across
the world but it is currently not in a state that direct communication between devices is straight-forward.
The large increase in connected devices expended the address space of IPv4 and IPv6 transition has
been slow, thus network address translation creates subnetworks with local adress spaces. Connection
from such a subspace to a server with a public adress is still simple like it is the case with most client-
server applcations on the internet, but direct communication when both devices are behind NATs is
still not standardized. Also new routing solutions are required to ensure communication based on the
actual identity layer mentioned before instead of the IPv4 and DNS identity layer.

Record and distribution mechanism Reputation is based on feedback on interactions. This feed-
back needs to be recorded and distributed, such that other entities in the network have a chance to
respond to the history of feedback of their peers. Without a central entity which is aware of all trans-
actions, each node will record some transactions. It is a challenge to create a global record which is
correct, tamper-proof and well distributed across the network.

Interpretation of records Based on the recorded feedback each agent can interpret them to form
an opinion about other nodes. For a reputation system the records are seen as positive or negative
behavior and each agent can output a ranking of reputations for all peers this agent knows of. Those
rankings are calculated based on a reputation function. In the past our research group has analyzed
different reputation functions like NetFlow [17], MaxFlow [14] and PageRank [19].

Application layer We imagine that the reputation system we are developing can be used for any type
of application that requires two entities to trust each other. This reputation layer will be accessible for
anyone however no application will be able to delete data or lock data into their proprietary platform.

Each layer adds another level of protection: if identities are expensive and hard to create, fake
identities will be less easy to create, protecting the system against spamming. Creating an immutable
record and distributing that information to everyonemakes knowledge tamper-proof, unchangeable and
forever, making all information reliable. On the interpretation layer additional securities can be enabled:
we envision a concept of locality to secure against distributed attacks with global collaborations of
malicious nodes - if we only trust agents with a certain level of latency attackers can only choose from
nodes in the vicinity and supply of those nodes is limited.

2.4. Related work
In the previous two chapters we have shown that a need exists for a decentralized accounting system in
order to create a global infrastructure for secure, anonymous digital transactions that does not require
control through a trusted third party. This need has been identified before and work has been performed
both in the scientific community as well as the industry. In this chapter we will summarize those efforts,
describe the short-comings of those approaches and define a basis for the work performed in this work.

2.4.1. Decentralized accounting systems
The general concept of accounting is quite old as it is simply a recording of transactions between two
or more parties. Before the digital age those recordings were simply written text on paper, nowadays
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those recordings are stored in databases. We are concerned with another type, namely decentralized
accounting systems. We identified three types of applications for decentralized accounting systems:
cryptocurrencies, distributed work systems and reputation systems.

In the years 2007 and 2008 the global financial crisis shattered the global economy, lead to many
people loosing house and job and diminished the trust clients had in banks to keep their money safe.
Politics discussed the problem and proposed to regulate the banks more but with little impact. However
something else promised to change the banking world: the first white-paper for a decentralized digital
currency without any need for a trusted third party, Bitcoin, was announced.

Bitcoin. Before the announcement of Bitcoin it was assumed that in order to verify the correctness of
transactions between parties and prevent cheating with digital money a bank or credit card company
was needed. Bitcoin proved them wrong by creating a hash-based chain of transaction blocks, a global
ledger, that is shared among all users of the network. The acceptance of transactions is managed by
a process called “mining” which ensures that only the majority of CPU power can publish new block.
A blocks contains a fixed number of transactions and the Bitcoin network makes sure that a block is
created once every 10 minutes. All mining node will execute the proof-of-work mechanism: in order to
publish a block a value needs to be found that, when hashed with a certain hashing function like SHA-
256, starts with a certain number of zeros. Depending on how many CPUs are active on the network
the problem can be increased in difficulty by requiring more zeros at the beginning of the hashed value.
Once a new block is published other nodes will validate the transactions and if they agree, will show
their acceptance by working on creating the next block. This system ensures that as long as a majority
of CPU power is owned by honest nodes, they will outpace the rest of the network in solving the hashing
puzzle and creating valid blocks. Nodes will accept the longest chain and the transactions will be valid.

The Bitcoin approach solved many problems assuming that an honest majority exists: first and
foremost the double-spending of funds is prevented because the Bitcoin blockchain creates one global
order of valid transactions. Also the Sybil-attack is prevented by pairing the voting power to the avail-
able CPU power, which means Sybils can only run on real hardware, removing the advantage of fake
identities. But these measures of attack prevention come at a price of efficiency. The surging price
of Bitcoins especially in the year 2017 led to a surge in transactions, transaction fees and energy us-
age. The increasing price of Bitcoins makes mining them more profitable which means more nodes are
joining the mining operation. Therefore the difficulty for the proof-of-work problem is increased, such
that it takes more computing power to find a correct value. This again increases the amount energy
consumed in the whole network. At the same time the number of transactions processed is a constant
of the Bitcoin currency, approximately 7 transactions per second. At the time of writing the energy
conusmption is at least 2.55 GW which makes it comparable to contries such as Ireland. Summarized
Bitcoin was a large step towards decentralized accounting but unsolved scalability issues still prevent
it from being actually useful as an infrastructure such as the one we envision.

Alternative coins and improvement measures. Bitcoin served as a first proof-of-concept for trust-
less digital currencies or for our purposes, a “secure” decentralized accounting system, but the short-
comings were also obvious. Once the populartiy increased, other enthousiasts, startups and incumbent
companies started to create their own spin-off digital currency. Each of these so-called “alternative
coins” used blockchains as a core technology to store transactions but tried to solve the scalability is-
sues using different approaches. The discussion of all alternative coins goes beyond the scope of this
chapter, therefore we will quickly introduce some of the main differences between the largest systems.

The block time is one parameter to tweak in order to increase transaction throughput. Ethereum,
the second largest cryptocurrencies currently uses a block time of 15 seconds with a proof-of-work
consensus. Also block size is a factor in the throughput rate, but increasing block time and size only
creates a constant factor to the rate of transactions.

Ethereum is currently testing a proof-of-stake mechanism which should replace the energy intesive
proof-of-work. In short this mechanism will require “minders” to put some amount of currency into a
wallet in order to participate in the process. If a miner does not perform the validation of transactions
correctly that “stake” will be lost for the miner. This will solve the energy consumption problem but it
will not solve the overall scalability issue of the system.

Another feature in development in multiple currencies is the “Lightning network”. The lightning
network will allow two parties that expect to conduct multiple transactions with each other to create a
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“channel”. Both parties store some funds in the channel and can then interact freely through this channel
without needing to interact with the master network of the currency. Only the opening and netbalance
at closing time will be writting to the chain while all other interactions are only recorded locally. This
should increase the possible throughput significantly but due to the early stages of development the
actual implications of large-scale use are not proven at the time of writing. But considering that Bitcoin
has a transaction limit of 200000 transactions a day, it would still take 5000 days or 13.7 years to open
one channel each for a billion people.

The IOTA project ...
Sharding ...
Conclusion is no other system exists that fulfills the requirements

2.4.2. Distirubted work systems
In the field of distributed computing many applications include some mechanism in which a node is
performing work for other nodes or the network in general. Seuken et al. call these distributed work
systems. Some examples of distributed work systems are peer-to-peer file-sharing network, packet
forwarding in mobile ad-hoc networks and volunteer scientific distributed computing. As our research
group is mostly concerned with file-sharing networks and the concepts are similar in general we will
stick to that example to discuss the latest developments.

Many different file-sharing networks have been built in the past, the most prominent being Napster,
Gnutella and BitTorrent. In contrast to centralized file-sharing, in peer-to-peer systems there is no
server that contains all data, but instead users share data directly, one peer downloading and one peer
uploading. With no infrastructure needed, no costs and no single point of failure such a systems seems
optimal. Talking in terms of distributed work systems, the act of uploading is equivalent of performing
work while the act of downloading consumeswork. There is, however, a social dilemma here: uploading
to another node does not lead to an immediate reward for the uploading node, therefore, if we assume
that bandwidth is a precious resource it is cheaper to not upload, yet if all agents on the network realize
this, no agent will upload and thus no agent is able to download. The agents that do not upload any
data are known as free-riders and free-rider protection in peer-to-peer file-sharing networks is a subject
of ongoing research.

Accounting systems pose a possible solution to the free-riding problem. Let’s first imagine a cen-
tralized accounting systems keeping track of all uploading and downloading behavior, uploading data
increases the balance of agents, downloading decreases the balance. Now, the accounting system
can enforce that agents keep their balance around 0, so they upload approximately as much as they
download. Therefore, an accounting system can solve the free-riding problem, however as mentioned
multiple times, a decentralized accounting system is hard to implement. Accounting mechanisms have
first been related with this subject in the DropEdge paper, however a lot of work has been done on
the very related subject of reputation systems, which will be discussed in the next section. Seuken
et al. define an incentive-compatible accounting mechanism which removes any advantage for users
that misreport their own contributions in the network. They present their DropEdge algorithm and show
that it’s possible to increase the efficiency of BitTorrent clients using accounting. A negative result of
their work is that an accounting mechanism cannot prevent sybil attacks. Some short-comings of the
approach is strategic manipulations of data and dissemination of data.

2.4.3. Reputation systems
One of the reasons that decentralized accounting systems are hard to create is that agents in peer-
to-peer applications do not have a complete view of the network and thus also not all information of
the network, at least not without a global consensus mechanism. In the file-sharing example from
the previous section agents decide to upload to other agents based on some partial knowledge of the
network and contributions of agents. It can be argued that an accounting mechanism cannot be correct
if it acts on partial information and instead the particular balance of an agent as seen by another agent
is rather a reputation. The goal is then to create trust between users in order to facilitate cooperation.
Such a system will be called a reputation system.

Whether reputation systems can be called an application of accounting systems can be argued
about. In general accounting systems track transactions between accounts, the full history of transac-
tions determines the state of the network. According the framework of Mui et al. trust is the expectation
of reciprocation for an agent given that agent’s history of behavior. So a reputation system can act
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on the data of an accounting system and add additional conclusions. The previous example of agents
uploading and downloading helps to understand this. An accounting system keeps track of the trans-
actions and calculates the balance of an agent, for example +10MB, for an agent that has uploaded
10MB more than downloaded. Also it is possible to account the total uploaded and downloaded data,
for example 1010MB and 1000MB respectively. A simple accounting system stops at this point, the
system behaves correctly when no error has been done in calculating the balances and the data is
correct. A reputation system adds another layer of interpretation to this data. The simplest reputation
function only checks whether the balance is positive or not, or if the choice is between multiple agents,
whose balance is the most positive. Another reputation function might weight agents with a 0 balance
but 10GB of uploaded (and downloaded) data more trustworthy than an agent with 10MB positive bal-
ance but only 100MB uploaded data. Thus we can see a reputation system as a layer on top of an
accounting system.

Describe some reputation systems ...

2.5. TrustChain
TrustChain was built as a system to create trust between two strangers

2.5.1. Data structure
2.5.2. Accounting mechanism
Definition of trust and reputation

2.5.3. Subjective graph
2.5.4. Consensus
2.6. Value of reputation
The concept of trust is however vague. In the analog world, trust is more of a feeling than a rational
calculation, yet computing systems are deterministic, precise and rational. The vagueness partly stems
from the subjective interpretation of actions which in the digital system is the reputation function used,
but also from the difference in what each person knows about another one, or in digitally speaking
subsets of information that each one agent has. Yet, from a practical point of view it would be desir-
able if people could agree on the reputation and trustworthiness of agents, because it makes actions
predictable and gives reputation its value.

To see this we should go back to the discussion of indirect reciprocity, which is one of the five forms
of fostering cooperation which were introduced in chapter 1. People act prosocially at a personal cost
in order to build an altruistic reputation which is rewarded with third-parties acting prosocially towards
them. Reputation is valuable because people with higher reputation can expect more cooperation in
future interactions. This indirect reciprocity mechanism works as long as agents agree on what is good
and what is bad reputation. Once there is ambiguity about the reputation of agents this value decreases
as even people with a bad reputation could be seen as good people by others due to that ambiguity.
Also only if reputation has actual value to agents, we can ensure prosocial behavior in the network.
Therefore we need agreement on the reputation of agents.

Agreement on the interpretation layer can be achieved by defining a function for all agents to use
which calculates a quantitative reputation from the history of feedback. Usually this history is public,
visible to everyone, however this is difficult to achieve in a distributed system. Here the second problem
comes into play. The information a network node acts upon is a different subset of complete information
on the network for each agent; each agent is in a different state. This situation is undesirable but
inherent to systems with the requirements stated in the previous section. Thus, a first step towards
agreeing on the reputation of agents is if agents agree on which data should be used as an input to
the reputation function. In other words we have to make sure that agents disseminate their knowledge
and obtain knowledge from other agents such that information is well distributed and available.

However, in most contexts sharing and obtaining information comes at a cost which is not negligi-
ble. Thus agents may be reluctant to spend resources without any direct reward. There is an obvious
network effect to agents knowing more about their peers but agents can also gain reputation by co-
operating with agents with low reputation. Thus there is no incentive to obtain a better view of the
network.
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2.7. Agent behavior through incentive
2.8. Research question
The question that we are trying to answer is therefore:

How can we design a scalable, distributed feedback recording and distribution mechanism that
makes dissemination and verification of transaction records incentive compatible?



3
Formal Model Defnition

In the previous two chapters we have introduced the problem of state-of-the-art commercial reputation
systems and explained how a distributed reputation could solve this problem but requires among other
things a strong transaction recording and distribution mechanimsm. In this chapter we formally define
a model in which we can analyze this mechanism. We will first reintroduce the notation which has been
defined in previous work on the subject of reputation systems. Afterwards we apply that notation to the
TrustChain solution which will be the basis of the solution defined in later chapters of this thesis. Finally,
we can specifically point out the shortcomings of that solutions. The next chapter will then introduce a
new extension of TrustChain which will tackle those shortcomings.

3.1. Basic model and notation
For this model we use the notation that was defined byMui in [15]. The goal is to develop the notation for
a model of trust and reputation in a social network. Mui developed this notation to study a computation
model for trust and reputation which fits the subject of this work perfectly. For the sake of simplicity
we will further simplify the model and ignore the context dependence of the social networks, so the
definitions assume the reputation and trust are about a single context.

We first define a social network in general.

Definition 1 (Social network). A social network is a society of a set of agents 𝐴 = {𝑎ኻ, 𝑎ኼ, … 𝑎ፍ} that
allows for agents to communicate and interact with each other. A social network has size 𝑁 if there are
𝑁 uniquely identifiable agents 𝑎። in 𝐴.

This definition of a social network can include any society, so it could be the world wide economy,
or Facebook, but from the previous discussions it should be clear that trust and reputation always act
in a social network. Without the context of the social network those concepts would be of no use. In
most global scale networks we can not assume full observability, therefore Mui defines, with reference
to the work of Granovetter [8], the embedded social network.

Definition 2 (Embedded social network). An embedded social network with respect to agent 𝑎። is the
unique society of agents 𝐴። that agent 𝑎። is aware of at certain moment in time.

It should be clear from definition 2 that we make no full observability assumption. Each agents acts
within the subjective embedded social network.

The social network makes it possible for interactions to happen between agents. We call those
interactions “encounters”. For the moment we use the simplified definition from Mui and assume that
during an encounter both parties chose an action from the set of cooperation and defection: 𝛼 ∈
{cooperate,defect}. We will later extend this definition to the usecase of Trilber. As explained before
(WHERE?) this fits the game of Prisoner’s Dilemmawhich is the theoretical basis for reputation systems
in general.

Definition 3 (Encounter). An encounter 𝑒 ∈ 𝐸 = 𝛼ኼ is an interaction between agent 𝑎። and agent 𝑎፣
such that 𝑎። executed action 𝛼። and 𝑎፣ executed action 𝛼፣.

11
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An agent’s encounters are the evidence on which other agents build their opinion of that particular
agent and therefore are the building block for trust. An agent’s behavior in the past encounters of an
define whether other agents will trust that agent or not. Formally Mui defines that history as follows.

Definition 4 (History). 𝐷፣,። = {𝐸∗} is the knowledge that 𝑎፣ has about previous encounters of agent
𝑎።, which include at least the direct interactions between the two agents but can also include other
nteractions of 𝑎። which were “observed” by 𝑎፣.

That fact that encounters happen within the embedded social network that connects the two parties
in the encounter means that the history does not necessarily include all encounters by a certain agent.
With the definition of the history it is possible to define the two concepts of interest, reputaiton and
trust. Consider the case that an agent 𝑎። is determining the reputation of another agent 𝑎፣ which is
in the embedded social network 𝐴።. The reputation of 𝑎፣ in that embedded social network 𝐴። is solely
depended on the history 𝐷።,፣, the encounters which 𝑎፣ took part in and are known to 𝑎። ’s embedded
social network. Mui then defines reputation 𝜃።,፣ simply as a value between 0 and 1, where a low value
means that 𝑎። thinks 𝑎፣ has a low intention to reciprocate and a high value means the opposite.

Definition 5 (Reputation). 𝜃።,፣|𝐷።,፣ ∈ [0, 1] is the reputation of agent 𝑎፣ as seen by 𝑎። given the history
𝐷።,፣.

Given this definition we are also able to define the “true reputation” 𝜃ᖣ which is the reputation as
calculated using the complete history of all agents encounters, or 𝜃ᖣ፣|𝐸 ∈ [0, 1]. Slightly deviating from
the model of Mui in order to stay closer to previous work on the specific usecase of the TrustChain
architecture we will define reputation as a direct function of this history.

Definition 6 (Reputation function). 𝑅 ∶ 𝐷 × 𝐴 → 𝜃ፍ is a function that maps from the known history of
encounters 𝐷 to a reputation value 𝜃 for each of the 𝑁 agents in 𝐴.

Finally, the definition of trust as given by Mui is the expectation an agent 𝑎። has that another agent
𝑎፣ will reciprocate actions in a future encounter.

Given the above definitions a circular relationship between reputation, trust and reciprocity can be
induced. Acting reciprocatively in an embedded social network increases an agent’s reputation, which
in turn increases the trust other agents have in that agent. More trust should then lead to other agent’s
acting reciprocatively which closes the circle.

However Mui states explicitly that a “decrease in any of the three variables should lead to the re-
verse effect”, thus this circular relationship only holds true if the history of actions is to a large amount
transparent to other agents. Also if agents act purposefully wrong and not according to the reputation
they calculate the effectivity of the system breaks down. In practice this boils down to problem of a
tamper-proof record of encounters and the dissemination of information about those encounters. The
next section discusses how this model can be implemented in a system architecture.

3.2. Implementation of the model in TrustChain and Tribler
The definition of the model given in the previous section is from a theoretical point of view for a general
reputation system. It is not immediately obvious how this model applies to an Implementation of a
distributed reputation system with a specific application. In this section we shall shed light on how the
TrustChain architecture and its application context Tribler fit this model. The results are summarized
in Table 3.1.

3.2.1. Application context: Tribler
In order to fit the model to the application context of Tribler, which is one context in which TrustChain
can be used we have to map the concepts given in the section 3.1 onto the concepts in the torrent
client context.

An agent in the model of Mui will generally refer to an instance of the Tribler client running on
a machine of a user. A single user can therefore run multiple agents on the same machine. Each
instance of the client has a unique identifier. Instances of a client in a distributed system are generally
also called nodes. Encounters between agents, in this case the Tribler clients, are transactions of data
on the torrent network or relaying of data for the onion routing. In both cases one agents uploads data
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Table 3.1: Mappings of the theorical model of trust systems to the higher layers of trust systems

Definition Agent Encounter Action Reputation Trust
Mui individuals in

a social net-
work

Event be-
tween two
agents

{ cooperate,
defect }

Value be-
tween 0 and
1 showing
the percep-
tion that
suggests
an agent’s
intentions
and norms

Expectation
that an
agent will
reciprocate.

Tribler Instance of
the Tribler
client

Transaction
of data

Two real
numbers
showing the
upload and
download
during an
encounter

Summed
upload and
download
over history

Subjective
value cal-
culated by
trust function
based on
reputation

TrustChain

and another agent downloads data, so the action space is a real number, where positive values refer
to the amount of data uplaoded and negative numbers to the amount of data downloaded.

The mapping of data upload and download is somewhat difficult to map directly to the cooperate and
defect actions, and therefore good and bad reputation. In general downloading is seen as consuming
value and uploading is seen as contributing value to the network. However Tribler’s additional layer
of security adds relaying of data as an action to perform and in that case relaying, uploading and
downloading the same amount of data, should increase the reputation while downloading more than
uploading should decrease the reputation. Qualitatively, agents will have a good reputation if they
contribute, that is upload, and relay a lot.

Finally, the difference between trust and reputation is not very straightforward either. However,
while the reputation is a well defined number, trust can be seen as a value that is more depended on
the network structure. As an example, imagine that we are evaluating our trust in two nodes with a
similar reputation, that is a similar amount of uploaded and downloaded data. One node has many
interactions with different nodes, most of which are known to us, while the other node has had only a
few large interactions with previously unheard of nodes. Taking the definition of Mui as basis for trust,
our expectation of reciprocity will be higher for the node that had successful interactions with nodes
that we had successful interactions with than for the other node. This fits the definition made in [11],
who state that “Trust systems produce a score that reflects the relying party’s subjective view of an
entity’s trustworthiness, whereas reputation systems produce and entity’s (public) reputation score as
seen by the whole community.” Therefore we can define a score, calculated from a certain (subjective)
point of view in the network based on the known repuatation of nodes, as trust. Such functions have
been defined in previous work, for example NetFlow in [18].

3.2.2. Implementation context: TrustChain
Similar to the application context the model can be mapped to the implementation layer, that is the
TrustChain architecture. This way we created a relation between the most basic theoretical layer of
reputation systems, the computational definition by Mui, the implementation layer all the way to the
application layer of Tribler. This allows for discussions of the problem in the context of each of these
layers without loosing the well-definedness property of concepts.

TrustChain is an implementation of a distributed blockchain-based database specifically designed
to create trust globally between relative strangers in a digital social network. In TrustChain agents are
simply public- and private key pairs. Each agent can be identified by the unique public key which is
used in each encounter. Each agent records transactions, in which that agent takes part, as a block
on a private chain. The transactions are the equivalent of encounters in Mui’s notation.
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Definition 7 (Transaction block). A transaction block that describes a transaction between agent 𝑎።
and 𝑎፣ can be defined as a 6-tuple 𝐵ፓፗ(𝑡) = ⟪tx, pk። , seq። ,pk፣ , seq፣ ,hashፁ(፭ዅኻ)⟫. This is still wrong. We
either have to introduce the block proposal/agreement scheme or include two hashes here. where:

• tx contains the actions performed during the transaction

• pk። is the public key of the initiator of the transactions, agent 𝑎።
• seq። is the sequence number of the block in the history of interactions of agent 𝑎።
• pk፣ is the public key of the responder of the transactions, agent 𝑎፣
• seq፣ is the sequence number of the block in the history of interactions of agent 𝑎፣
• hashፁ(፭ዅኻ) is the hash of the previous block

As TrustChain is designed to be application agnostic, the possible actions in encounters are not
pre-defined but can be anything that can be described by static data. If TrustChain is applied to the
Tribler context a transaction block records the amount of data uploaded and downloaded between the
two parties of the encounter. Trust and reputation are not directly represented in TrustChain as the
system itself is only a way to record encounters, not to interpret them. The interpretation of records of
encounters is left to the application context. Still, just like in the trust function defined previously we can
assume that in a TrustChain based system the set of encounters, which in TrustChain corresponds to
the observed transactions is the single input to the function.

The system does allow to define the embedded social network, the society in which an agent acts
as defined by Mui. The embedded social network of an agent 𝑎። in the TrustChain fabric are the agents
𝐴። which agent 𝑎። has directly interacted with, that is the public keys that agent 𝑎። is aware of and
knows to exist. This also means that in the case of TrustChain the embedded social network can be
described solely by the set of encounters 𝐸። of an agent. However in a global network that embedded
social network is usually a very small fraction of the complete social network. This means that chances
are low for an agent to be aware of the good behavior of other agents which is one of the fundamental
properties that a reputation system needs to fulfill. This brings the discussion to the problem that was
described in chapter 2.

3.3. Strategic manipulations
3.4. Problem analysis and possible solutions
In the previous section we have combined the model of Mui [15] with the TrustChain architecture and
the Tribler application context to create a well-defined basis for discussion in each of these layers. We
showed that in TrustChain, an agent’s embedded social network and the agent’s true reputation can
be inferred simply from the complete set of interactions that the agent had. Those are stored in the
form of a chain of blocks on the agents machine. Now what is problematic is that the agent’s own
interactions form a miniscule subset of all interactions in the complete social network, which leads to
problems of security and the mechanism of the reputation system. The goal from a system designer’s
point of view must be to ensure that agents observe more interactions than their own, without being
subject to strategic manipulations.

3.4.1. Dissemination mechanisms
Achieving the desired dissemination of transaction records is not a new problem in distributed system as
it is similar to synching the two stateful disconnected systems, for example a database. Dissemination
mechanisms have been researched for many decades. [9] is an early summary of the most important
techniques in on dissemination Hedetniemi et al. describe gossiping, broadcasting and shortly mention
receiving and polling. We shall briefly introduce the concepts here.

Gossiping Gossiping is the a mechanism in which pairwise exchange of information takes place.
Imagine a set of agents in which each agent has knowledge of a unique set of encounters that all other
agents are not aware of. The goal is to reach a state in which all agent have the information on all
encounters. During gossipping, an agent chooses a set of partners and with each partner the agent
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exchanges all information. This is done by each agent and after a certain number of interactions the
dissemination is complete. Different variants exist for gossiping, for example only allowing one-way
communication, allowing multi-party exchanges and restricting the number of exchanges per agent.

Broadcasting Broadcasting is a process in which information originates from one agent in the net-
work, who needs to transmit the information to all other agents in the system. Again information trans-
mission happens in pairs of two agents, and communication only happens between adjacent nodes in
the network. In contrast to gossiping where new information originates at all nodes, in broadcasting all
nodes communicate one piece of information.

Receiving In receiving all agents send some unique information to a specific agent, called the re-
ceiver.

Polling Polling a information accumulation process in which a single originating agent sends requests
for information to all other agents who then respond with an information carrying message.

The survey shows that dissemination of information in itself is a well understood topic and many
implementation of such protocols are widely available. However some problems exist when taking into
account the possibility of strategic manipulation. Those will be discussed in the next section.

3.5. Problems of implementation of dissemination algorithms
The previous section shows that information disseminationmechanisms are possible andwell-understood.
However problems exist when considering their implementation in global-scale distributed systems in
which manipulation is possible.

3.5.1. Complete synchronization and scalability
All of the dissemination mechanisms mentioned in [9] consider the goal of complete information ex-
change. This would also be a disireable situation in the context of reputation systems. If each agent
has knowledge of all encounters, they could calculate the true reputation of all agents and simply agree
on whom to trust. The system would also be secure against malicious behavior.

However, a global reputation system that tracks all interactions of all agents creates a huge amount
of data which would need to be transmitted and stored on all agent’s devices. This seems like an
unfeasible target. Instead a “high level” of information dissemination should be strived for.

It should be clear the whether the state of complete synchronization can be achieved depends on the
rate at which new interactions are recorded and the rate at which information dissemination happens.
In fact, Bitcoin achieves full synchronization (except for the newest blocks which are seen as “not yet
confirmed”) through restricting the block time and size. With a block size of 4MB and a 10 minute block
time, there is enough time between new blocks such that nodes can synchronize with the updated state
of the system.

3.5.2. Incentive
Another intricacy of distributed system is that the designer of the system has no control over the actual
behavior of agents. That is why incentives need to be put in place in order to make it disadvantageous to
deviate from the designed behavior. Given the right incentives and rational agents that try to maximize
their value function the designer can be sure that no misbehavior will spread as it would decrease the
value function of those agents.

The problem with the TrustChain system is that while it’s security and the reputation system it aims
to enable rely on the dissemination of data, there is no incentive in place to guarantee that agents
engage in any dissemination activity. In contrast, assuming that data storage, computation power
and bandwidth are costly resources in the eyes of agents, it is actually disadvantageous for agents
to observe interactions of other agents, store them and verify them against their previous knowledge
in order to detect any malicious behavior. It is therefore possible to free-ride, not in the context of an
application like Tribler, but in terms of information dissemination: agents can decide to not share and
verify information and still take part in the network as valid agents. This problem needs to be solved in
order to guarantee a secure system that defends itself against malicious users and free-riders.
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In order to solve the problem we need to realize how incentives can be created. Bitcoin solves the
incentive for sharing transaction blocks by given nodes a reward for mining a block. Only if the node
broadcasts the block, can the award be claimed. Also other nodes want to stay updated on the state
of the chain in order to mine a block on the most recent chain as new blocks for shorter chains will not
be accepted.

Instead of giving awards in order to encourage behavior, we can also punish nodes in order to
discourage bad behavior. For example, double spending is discouraged because the records of trans-
actions make the attack detectable such that other agent can punish the attacker.

Another way would be to combine the sharing of information with the reputation system built on
top of TrustChain. In that way good reputation can not only be built through behaving well in the
application context but also by being a good agent in the TrustChain network. Helping the network to
defend against malicious nodes by obtaining and spreading information should then be rewarded.

All ideas require a feature that TrustChain does not offer at the moment: the recording of exchanges
of information. All we have presented before about TrustChain is concerned with transaction in the
application layer but not the record layer. However, in order to reward the exchange of information or
punish free-riding on this layer, this information needs to be stored in a tamper-proof manner just like
the transactions. That is the state of an agent, which we argued can be described by the encounters
that the agent had in the past, should include also the information exchange behavior.
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Internal agent state transparency

In the previous chapters we analyzed the problem of information dissemination of data for a distributed
repuation system built on the architecture of TrustChain. We have argued that in order to make the
dissemination strategy proof, which is neccessary to guarantee that no agent deviates from the desired
behavior without being detected and properly dealt with, we need to publicly record the action of sharing
knowledge. In this chapter we propose an extension of the TrustChain architecture that enables strat-
egy proof information dissemination and validation in a distributed TrustChain based network without
deminishing the scalability properties.

4.1. Concept proposal
In the previous chapter we formally defined the internal state of an agent as not only the encoutners
of agent’s own encounters but the complete knowledge of the network the agent has. That knowledge
can be represented by the set of encounters the agent is aware of. Based on this we can define a
desired property that a fabric like TrustChain needs to fulfill in order to provide strategy-proof sharing
of information.

Definition 8 (Interal agent state transparency). The internal agent state is transparent, and therefore
this property is fulfilled, iff:

• an agent 𝑎። can require an agent 𝑎፣ ’s internal state from any point in time

• an agent 𝑎። can determine whether an agent 𝑎፣ is lying about her internal state

When the property is fulfilled there should be an exchange protocol after which an agent is aware
of all information the other agent has as well as a verfication protocol which validates that the claimed
internal state is indeed valid and complete.

In order to achieve internal agent state transparency for TrustChain, any exchanged information
needs to be public. We will later describe the incentive for agents to actually perform this exchange.
So, conceptually a record exchange can be defined as follows.

Definition 9 (Record exchange). A record exchange 𝑋፤ of size 𝑚 contains a list of transaction blocks
𝑋፤ = {𝐵ፓፗ፤,ኺ , 𝐵ፓፗ፤,ኻ , …𝐵ፓፗ፤,፦}.

Finally, the complete state can be described by the union of performed transactions and transactions
obtained through exchagnes.

Definition 10 (Internal state composition). The internal state 𝑆። of agent 𝑎። with true transaction history
𝐷ᖣ። and 𝑘 exchanges can be inferred as follows.

𝑆። = 𝐷ᖣ። ⋃{𝑋።,ኺ⋃𝑋።,ኻ⋃…𝑋።,፤}

17
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4.2. Implementation of internal agent state transparency in TrustChain
In the previous section we conceptually defined the internal agent state transparency for TrustChain.
This section will describe how those concepts can be implemented in a working distributed software
system.

First and foremost, a new type of record needs to be created in which no application specific transac-
tions, but system transactions of other records will be documented. We therefore extend the TrustChain
architecture (described in detail in WHERE?) with exchange blocks

Definition 11 (Exchange blocks). An exchange block𝐵ፄፗ = ⟪exup, exdown, pk። , seq። ,pk፣ , seq፣ , sig። , sig፣ ,hashፁ(፭ዅኻ)⟫
is defined as a tuple, where:

• exup is the top hash of the list of hashes of blocks the initiator 𝑎። shared with 𝑎፣

• exdown is the top hash of the list of hashes of blocks the responder 𝑎፣ shared with 𝑎።

• pk። is the public key of the initiator of the exchange, agent 𝑎።

• seq። is the sequence number of the block in the history of interactions of agent 𝑎።

• pk፣ is the public key of the responder of the transactions, agent 𝑎፣

• seq፣ is the sequence number of the block in the history of interactions of agent 𝑎፣

• sig። is the signature by the initiating agent 𝑎።

• sig፣ is the cryptographic signature by the responding agent 𝑎፣

• hashፁ(፭ዅኻ) is the hash of the previous block

Each exchange block describes a pairwise exchange of blocks. The exchange is deliberately made
bidirectional in order to provide an incentive for both agents to sign the exchange and keep to the
promise of publishing the exchange on their chain. Instead of publishing the exact blocks exchanged,
a list of block hashes is created and the hash of that list is published in the exchange block. One hash
for the block transferred from agents 𝑎። to 𝑎፣ and another hash for the blocks transferred in the other
direction. This reduces the amount of data put directly on the chain, however it makes it impossible
to infer the internal state of the agent from the chain only. That is why each agent internally needs to
keep track of the actual content of the exchanges.

Definition 12 (Exchange storage map). Each agent keeps track of the content of all exchanges with
an exchange storage map 𝐹 ∶ hashፁᐼᑏ(፭)− > 𝑋(𝑡) which maps the hashes of exchange blocks to
the respective record exchange, so the list of blocks the agent received in the exchange described by
𝐵ፄፗ(𝑡).

The combination of exchange root hashes and the exchange storage kept by each agent enables
tamper-proof exchange of information. This enables agents to determine the state of another agent.
Consider an agent 𝑎። that tries to determine the state of agent 𝑎፣. Agent 𝑎። requests both the chain
and the exchange map from agent 𝑎፣. If 𝑎፣ does not respond, agent 𝑎። is not able to determine the
state and has to assume that 𝑎፣ does not respond in order to hide malicious behavior. In that case 𝑎።
will add 𝑎፣ to the list of blocked agents.

If both the chain and exchanges are available, the agent 𝑎። loops through the chain. Each block
of the chain is added to the state and if the block is an exchange block, also all blocks that were
transmitted during the exchange documented by that block, which can be looked up in the exchange
map are added to the state. The result is the complete internal state of agent 𝑎፣. The algorithm is
described formally in algorithm 1.
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Algorithm 1 Determining the internal state of another agent
1: procedure determineState
2: 𝑎። ∶ Initiator
3: 𝑎፣ ∶ Responder
4: chain ← request_chain(𝑎፣)
5: 𝐹 ← request_exchanges(𝑎፣)
6: state ← []
7: if not chain or not 𝐹 then return false
8: for all B in chain do
9: if B is an exchange then

10: state = state ⋃𝐹(𝐵)
11: state = state ⋃{𝐵}

return state

4.3. Making sharing strategy proof
How is strategy proof even defined? We have described how the internal agent state transparency
property can be added to the TrustChain architecture, however this in in itself does not make dissem-
ination of information strategy proof. It only creates a tool to document information exchanges in a
tamper-proof manner. The next step is to use the knowledge about information exchanges conducted
by the agent to make decisions about future interactions.

One solution is to build a system internal reputation which is based on the amount of data shared with
other agents. Agents that exchange more data with other agents and initiate exchanges to obtain more
data should have increased reputation. Helping the system defend itself against attackers and making
information widely available would then be advantageous as other agents see the good behavior, have
a better opinion of that agent and share data with them.

Another solution is to define policies that require a certain amount of data exchange for each trans-
actions. Let’s say that the system designer introduces a policy which requires honest agents to only
interact with other agents that have at least one data exchange for each transaction they conduct. This
is simple to verify: the agent scans through the chain and counts the transaction and exchange blocks
and verifies that there are at least as many exchange as transaction blocks. Otherwise the agent will
simply not interact with that agent.

4.4. Possible ways to work around the security
In this section a few examples of maliciously acting agents will be analyzed theoretically. The same
will be done in experimental analysis with a proof-of-concept. We assume that all agents that interact
with each other also verify each other’s chain and internal state.

First of all, what the original TrustChain implementation allowed was to free-ride on information
sharing and verification. That is, even though honest nodes were polling other agents for information
on transactions and verified that no double-spends happend, other nodes were able to not do that and
still interact with honest agents.

Definition 13 (Lazy free-rider). We define a lazy free-rider as an agent that performs normal in trans-
actions but never performs an exchange of information on transactions.

In a network of honest agents, the lazy free-rider will quickly be found and blacklisted as that agent
will simply not have any exchange blocks in the chain.

A more elaborate way of free-riding is to exchange blocks and create exchanges but delete the data
as soon as it arrives.

Definition 14 (No storage free-rider). A no storage free-rider is an agent that does exchange data but
does not store the received data.

A no storage free-rider can only commit a few interactions before being detected as a fraud. Let’s
consider the first verification. The no storage free-rider agent only has the genesis block which is cheap
to share. Therefore the first verification will go through and an exchange block will be created. However,
the second verification is more difficult to pass as some information will have been received as recorded
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in the exchange block but cannot be conjured on request. Any further verifier should therefore find that
the agent is not able to provide the blocks of the first exchange recorded on the agents chain.

4.5. Making verification strategy proof - Verification of verifiers
Another way of free-riding on the original TrustChain architecture is to not actually validate any data.
Even if we solve sharing of data, agents can still save computing power by not scanning their peers
for malicious behavior in the hope that other agents on the network do perform the validations and will
inform them once they find something. The new extension makes it possible to detect this behavior in
case they fail to report a malicious transaction.

Definition 15 (Validation free-rider). An agent that does perform honestly in terms of transactions and
exchanges but does not validate the behavior peers is called a validation free-rider.

The proposed extension of TrustChain enables an agent 𝑎። to determine the internal state of agent
𝑎፣, that is obtain the list of all blocks of 𝑎፣. Consider that 𝑎፣ is a validation free-rider and 𝑎። has
obtained 𝑎፣ ’s internal state. If 𝑎፣ has obtained the knowledge of a malicious transactions, for example
two conflicting blocks of a double-spend, 𝑎፣ will not have realized it as the validation has never been
performed. However 𝑎። is aware of all blocks that 𝑎፣ has and therefore also aware that 𝑎፣ should be
aware of the conflicting blocks if 𝑎፣ was honest. Now, 𝑎፣ ’s free-riding will be detected if 𝑎፣ has performed
an interaction with the agent resopnsible for the conflicting transactions. That is because any honest
agent would have detected the conflict and ignored that agent except for colluters or validation free-
riders.

4.6. Considerations of asynchronous transactions
In the previous discussion we have actually simplified the system to one in which each agent only per-
forms one transaction at a time. This makes it more straight-forward to understand the properties and
see that the extension does provide a strategy-proof dissemination. In a real-world system, depend-
ing on the use case, a user might need to quickly engage in multiple transactions and communication
delays do not allow to finish transactions first and then continue with the next. In previous work we
have shown how TrustChain can work in an asynchronous way, by splitting the transaction blocks into
a block proposal and a block agreement. This also creates additional complexity for the exchange
blocks as the asynchronous reception of blocks needs to be recorded in order to keep the property of
internal agent state transparency.

Definition 16 (Async exchange block).

4.7.
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Reputation consensus through

anti-entropy
In the first chapters of this thesis we introduced the incentive problem of information dissemination in
distributed reputation systems. In the previous chapter we introduced an extension of the TrustChain
architecture that allows for agents in the network to obtain and verify each other’s internal information
state. But in order to achieve the goal of strategy-proof dissemination of information a tangible mecha-
nism is required that applies the advanced tools that the new architecture provides. In this chapter we
analyze one such mechanism which is based on the anti-entropy concept. We first describe the mech-
anism conceptually, then discuss the implementation details and finally elaborate on some intrinsic
properties the mechanism could introduce in actual applications. In the next chapter an implementa-
tion will be analyzed experimentally with small agent sets in order to prove that properties from the
theoretical analysis can be observed in practice.

5.1. Conceptual description
Section 4.3 explained that the architecture itself does not solve the incentive problem. It rather provides
the evidence on which an incentive mechanism can be built. Many different mechanism are possible,
depending on the specific needs of the application context. This offers a lot of flexibility for system
designers which is different from existing architectures which a very static in their protocol and have
pre-defined security and scalability properties.

5.1.1. Design choice: security vs scalability
Security, decentralization and scalability are three properties that are traded against each other in the
design of a decentralized system. It can be argued that TrustChain was designed with scalability as
the highest priority while Bitcoin was designed with security as highest priority property. We argue that
the extension that allows for internal agent state transparency allows for flexibility in the design choice
of security and scalability. In this section we propose a mechanism that trades some of the scalaiblity
of TrustChain for stronger security in order to show that a secure mechanism is possible on top of the
TrustChain architecture.

5.1.2. Concept: anti-entropy
The mechanism is based on the concept of anti-entropy, which was described in [7] for the purpose
of maintaining mutual consistency between multiple replicas of a database. Updates to the database
can arrive at any single site and need to be forwarded to all other replicas. Demers et. al. study three
different mechanisms to disseminate the updates to other sites: direct mail, anti-entropy and rumor
mongering.

In the direct mail mechanism, a database forwards the update to all other database immediately,
which seems like the most straight forward approach but is restricted by the fact that each database
does not know about all other databases.
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Anti-entropy is a process in which each database periodically chooses a partner database and both
exchange all database contents in order to resolve any differences between the two. The process was
found to be reliable but slower than direct mail.

The final mechanism is called RumorMongering. Sites consider updates “hot rumors” after receiving
them for the first time. While the site considers the rumor “hot”, it choses periodically another site and
informs it about the rumor. When the site has encountered a certain amount of sites which were already
aware of the “hot rumor”, that update is retained but site stops with actively propagating the update.

For the purpose of this work, we will focus on the concept of anti-entropy. Direct mail is not a viable
option because for large social networks the embedded social networks are a very small subset and
the rest of the agents in the network would not be informed of updates. Rumor mongering effects are
best observed in larger networks however this work is concerned with conceptual analysis and the
experimental analysis in the next section concerns small networks. Also there are more algorithms
than these three but anti-entropy fits the architecture of TrustChain very well and is a good starting
point for analyasis of dissemination mechanisms. The analysis of other mechanisms will be subject of
future work.

5.1.3. Replicated databases vs TrustChain
The context of the work of Demers et. al. is similar to the context that this work is concerned with
in many regards. Replicated databases are a distributed system as all instances of the database are
independent, equal entities, just like the agents in the TrustChain network. Each agent has an internal
state which is equal to the set of transactions that agent is aware of which is equal to the state of the
database which is equal to the entries that database is aware of. Our goal is to propagate information
on new transactions just like the goal of Demers et. al. was to propagate updates to the databases.

In the context of reputation systems anti-entropy allows for two agents to align on their knowledge
of the social network, that is to obtain the same embedded social network and agree on the reputation
of all agents in that network. Two agents, 𝑎። and 𝑎፣ have two different internal states, represented
by the sets of encounters 𝐸። and 𝐸፣. There can be some overlap between the two sets, but that is
not guaranteed. Agent 𝑎። chooses to synchronize states with agent 𝑎፣. Both agents send their own
set of known encounters and merge them. This results in a new set 𝐸።,፣ = 𝐸። ⋃𝐸፣. In the context of
TrustChain this translates to the exchange of transaction blocks, such that after the exchange both
agents have the exact same set of transaction blocks. As the reputation of peers is calculated from
the set of transactions both agents agree on a single reputation vector. If the two agents also use the
same function for trust calculation both can even agree on a single trust vecotr. The two agents have
reached consensus on trust and reputation.

The exchange of information will be recorded in the form of exchange blocks on the chain of both
participating agents as explained in the previous chapter, section 4.2.

The consensus is only reached at one point in time and is not maintained. Once any of the two
agents conducts another anti-entropy exchange or a transaction, the other agent is not required to be
informed or to observe the interaction. That is after the exchange both internal states can diverge until
the same two agents happen to perform another state synchronization.

In the work of Demers et. al. database instances chose partners for anti-entropy exchanges at
random which is a valid strategy as each peers updates seem equally important. In contrast, reputation
systems should value the information about possible future interaction partners as more important.
Therefore, our proposed mechanism requires agents to at least perform an anti-entropy exchange with
those agents that they will have an interaction next. That way, both parties of a transaction are required
to obtain and verify each others information in order to make sure that the transaction will be done on top
of a valid state. If any party does not agree with the state of the opposite party, the transaction will not
take place. If any party performs a transaction eventhough the information clearly showsmisconduct on
the part of the partner, they will also be held responsible for not performing their validation responsibility.
Without the requirement of validating transaction partners, agents can purposefully exchange data with
honest agents but perform interactions with dishonest agents and later claim to have had no knowledge
of the dishonesty of the partners.
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5.2. Implementation of anti-entropy exchanges
In the previous section we described the anti-entropy method for information exchanges between
agents. This section elaborates on the implementation details of the mechanism in the TrustChain
architecture. We start with an application agnostic example of the exchange of information and the
transaction process.. In the next section we expand on the considerations for application specific im-
plementations.

We consider an agent 𝑎።, who is about to conduct another interaction. What the interaction is about
and how the partner is chosen are specific to the application context. For this example we assume that
𝑎። can randomly choose an agent from the network. Once 𝑎። has chosen a partner 𝑎፣, 𝑎። starts the
communication and is therefore the initiator while 𝑎፣ is the responder.

The initiator starts the interaction by sending the chain and exchange history to the responder.
The chainIs this explained somewhere includes the blocks that describe the transaction and exchange
history Is this explained somewhere of the initiator while the exchange history includes the index of
blocks exchanged for each exchange block. On reception, the responder can verify the chain using the
algorithm 2. The algorithm first checks, wether the chain is a complete sequence without missing blocks
in between. If the check is positive, the number of exchange and transaction blocks is compared, as
well as the public keys of partners such that each transaction can be paired with a succesful exchange
previous to the transaction.

Algorithm 2 Chain
1: procedure verifyChain

Once that check also succeeds, the responder is able to build a block index that indexes the internal
state of an agent. The block index is a summary of the contents of the internal state and shows which
transactions of which agents are knwon to the agent. This is an optimization that allows agent to request
only specific blocks instead of the complete database of another agent. This is a lot faster if agents
that already share a lot of data. Agent 𝑎፣ compares the calculated block index with his own index and
request the difference in blocks, so those that 𝑎። has but 𝑎፣ does not have from 𝑎።.

The initiator receives the request and replies with the blocks that 𝑎፣ requires to perform the complete
internal state validation. Should the responder, for whatever reason, wrongly require more blocks, so
also blocks that are not in 𝑎። ’s posession, the interaction will be canceled.

The responder receives the missing blocks. At this point 𝑎፣ should be in the posession of all of 𝑎። ’s
blocks plus some blocks that 𝑎፣ has over 𝑎።. Agent 𝑎፣ is then able to perform the complete internal
state verification according to algorithm 3. A state is valid if:

Algorithm 3 Chain
1: procedure verifyChain

• the chain is valid as per algorithm 2

• the hashes of the blocks according the the exchange indexes match the hashes recorded on the
chain’s exchange blocks

• Any recorded misbehavior of other agents is reflected by those agents’ public keys in the ignore
and block list

If the internal state of 𝑎። is determined to be valid by 𝑎፣, the responder shows approval by sending
the own chain, exchange history and blocks (which can be calculted by taking the opposite difference
from before) to agent 𝑎።.

Once the initiator receives that data from the responder, the second validtion of chain and state, this
time agent 𝑎፣ as subject, can be conducted. If also this checks out, the valdiation phase is completed
and the initiator can publish an exchange block proposal, which includes the hashes of the exchanged
blocks. The responder receives that proposal and the hashes contained in the proposal block match
the hashes that 𝑎፣ calculates for the excahnged data, the block is signed and returned.

This concludes the anti-entropy exchange, after this the two agents perform a normal interaction.
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5.3. Consideration of application specific features
choosing partners – we now chose partners randomly but probably for many applications there are
better strategies application specific rules – we could perform addiitonal verification for application
context, for example no downloading after a certain negative balance boundary

5.4. Advanced implicaitons of anti-entropy
locality – when you need to exchange all information and storage has avlue, it is cheapter to interact with
agents that have a largely similar information set sybil attack – when we can apply application specific
rules and we require agents to perform checks of all agents they interact with, we can introduce a rule
that says agents cannot upload to agents that are completely new to the network (they first have to
prove themselves). This way an agent cannot create fake agents that all download from one agent and
thus increase that agents balance without actual downloading happening



6
Experiments and results

In the previous chapters we have explored the problem of dissemination of information in distributed
trust systems. We offered a solution in the form of our multichain based TrustChain architecture, ex-
tended it with internal agent state transparency and designed a mechanism that prevents any free-
riding on dissemination and validation of information on transactions. In this chapter we aim to prove
the properties of the mechanism and architecture by experimental analysis. We built a proof-of-concept
software that fully implements the architecture and mechanism described in this work. It allows us to
run an emulation of an agent network and study the behavior of agents in the presence of strategic
manipulators.

6.1. Implementation details
• Python implementation

• zermq sockets

6.2. Experiment design
The goal of the experimental analysis is to show that free-riding on dissemination and validation of
transaction information is no longer possible with the extension of TrustChain proposed in chapter 4
and the mechanism in chapter 5. This would be a major step towards a secure and valid distributed
trust system.

In each experiment a small group of agents forms a network. Each agent is acting completely
autonomously but is aware of the other agents in the network, an assumption that simplifies the ex-
periment. In the real world agents will not be aware of all other agents but for the sake of exploring
the properties of our mechanism the peer discovery process is not of importance. All agents run a
main decision loop at high frequency and have a small chance of starting an interaction each time step.
When starting an interaction the agent acts according to the specific version of the software that agent
runs. For the experiments we distinguish different types:

• Honest agent: The honest agent acts exactly according to the rules of the system architecture
and the mechanism. In the application context this would be a standard installation of the soft-
ware.

• Dissemination free-rider: An agent that performs transactions normally but does not respond
to exchange requests or start own exchanges.

• Validation free-rider: An agent that performs exchanges and transactions normally but does not
perform any validation

With these types of agent we run experiments with different sets of agents. In experiments with only
a single dishonest agent, the experiment is successful if the honest agents stay among themselves and
ignore the dishonest agent. That is, the dishonest agent should have 0 transactions at the end of the
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experiment. In the case with multiple dishonest agents we have to make a distinction between multiple
single acting dishonest agents and collaborating groups of dishonest agents.

6.3. Experiment results
6.3.1. Baseline honest

Figure 6.1: Baseline experiment with only honest agents

6.3.2. Single dishonest agent

Figure 6.2: Baseline experiment with only honest agents
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Figure 6.3: Baseline experiment with only honest agents

6.3.3. Collaborating dishonest agents
6.3.4. Validation free-rider
TODO

6.4. Application specific experiments
6.4.1. Sybil attack





7
Discussion

7.0.1. Strategy proofness
7.0.2. Attack resistance
7.0.3. Future research
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