
1
Introduction

Trust is the bedrock of society. From the evolution of species, global markets all the way to the modern
sharing economy, trust has always had an important impact on almost every aspect of our lives. Trust
is built on a good reputation which in turn is created through positive outcomes of past interactions.
The value of a good reputation also depends on how widely known that reputation is. In small com-
munities, knowledge about each other is gained through gossiping or personal experience. But local
communities become less important as global communities and marketplaces become more common
through internet based applications. Still, or even more so, those internet communities depend on trust.
Protecting and distributing the knowledge about interactions in the digital world is a tough challenge
we are faced with when designing a global trust system.

The current state-of-the-art trust building systems are online platforms for the sharing economy. The
reputation systems of Uber1 and AirBnB2 are an essential part of their business. The good reputation
allows commuters to trust their driver and get into the car of a stranger, or allows house owners to rent
their home to a couple from the other side of the world. The reputation of drivers and renters are stored
on the platforms, they are both valuable to the people as well as the company. This leads to problems
when renters do not agree with updates to the platform: they cannot take their reputation and move to
a competitor. Users are locked into those platform, giving platforms great power and influence.

A similar situation exists in the banking world. Banks are entrusted with their clients money, but
their power led to corruption and the trust was abused. The situation escalated in the 2007-08 financial
crisis which led to a global recession. The crisis inspired a new solution: Bitcoin. Bitcoin is supposed
to enable secure payments without banks. As such it removes power from financial institutions and
puts it back into the hands of the actual owners of the money.

Not every digital money transaction should require a bank, and similarly not every trustful interaction
on the internet should require a third-party. Instead, the ability to prove one’s trustworthiness on the
internet should be open and free for anyone. Our vision is therefore to create a universal mechanism to
create trust. This work sets an important step towards creating such a system. Specifically we propose
a mechanism that protects and distributes the records of transaction which are essential for creating
trust.

This first chapter introduces some key concepts around trust and explains the context of this work.
It should shed light on the origin of trust research and its significance for the future of the internet. A
thorough contextual basis is created for the reader to fathom the problem description and proposed
solution in the following chapters.

1.1. Trust research
Virtually everyone that is part of a social community understands the concept of trust, yet defining
trust scientifically is hard. This is also due to the fact that trust is studied in a diverse set of sciences:
evolutionary biology, sociology, economics and lately computer science. In the simplified form of a
model trust can well be described and studied. The prisoner’s dilemma[6] is one such model from game
1https://uber.com
2https://airbnb.com
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theory that creates a framework for understanding trust. It is widely used in research and is the basis
for many experimental studies. We describe in the following the game, it’s relation with cooperation
and the impact on evolutionary theory, economics and computer networks.

1.1.1. Prisoner’s dilemma
The game Prisoner’s dilemma describes a dilemma common in many real-world situations, for example
the problem of two partners caught for a crime that are questioned in two separate rooms. Each prisoner
has two options, either deny all allegations, which is more generally called cooperating or betray the
partner, which is called defecting in general game theory. If both stay silent, both will get a sentence of
one year. If one betrays the other, the snitch is set free while the betrayed gets three years in prison.
If both betray each other, they both have to serve two years. When analyzing the game without any
additional knowledge and considering the payoffs for one of the prisoner’s it is always advantageous to
betray the other. Either the other also betrays, in which case two years is better than three, or the other
stays silent in which case betraying sets us free. However, when considering both prisoners’ outcomes
together it would be best for both to stay silent.

While the game is quite simple the implications are far reaching. The game is able to show the
connection between trust and cooperation. If both prisoners trust each other to never betray a partner,
both will cooperate and get a small sentence, the best combined outcome. Yet any mistrust makes both
fail at beating the system. The problem also describes many real world problems, called the tragedy of
the commons. For example, the global warming is a problem that can only be solved if all peoples and
all nations cooperate. Yet, the low cost and convenient usability of fossil fuels make it advantageous
to defect and damage the environment. Either the others try to save the environment in which case a
single defection will have a small impact, or the other will also damage the environment in which case
a single cooperator will fail anyways. Only, if everyone trusts each other that everyone does the best
they can to save the environment, then it is possible to beat the tragedy of the commons.

1.1.2. Evolution and cooperation
While cooperating, according to theory, is not necessarily a winning strategy, it is in our nature to do
so, as has been shown by evolution theorists. The theory about competitive natural selection between
individuals and mutation and inheritance of genes was the accepted truth about evolution since Darwin
until in the late 1960s doubts arose about the completeness of this theory. When looking at group
behavior in species one will find that cooperation is a common theme among related individuals, yet
there is no place for cooperation in the classic Darwin theory [5]. In their work Axelrod and Hamilton
[5] analyze how to combine the seemingly inferior individual’s strategy of cooperating with the goal
to maximize fitness. At the basis of their experiments is a again the Prisoner’s Dilemma. Axelrod and
Hamilton ran experiments on this gamewith multiple rounds instead of only one with different strategies.
They found that if the game is played repeatedly with the possibility of meeting the same partner again
in the future, cooperation between players can be established and be superior. Later research showed
that this direct form of reciprocity, the act of returning a deed, is only one form of cooperation found in
human behavior. Nowak and Martin [16] defined in total five forms in which cooperation can occur: kin
selection, direct reciprocity, indirect reciprocity, network reciprocity and group reciprocity. Conceptually
these forms can be described like this:

• kin selection: we help those that share our genes

• direct reciprocity: I help you, you help me

• indirect reciprocity: I help you, somebody helps me

• network reciprocity: neighbors help each other

• group selection: A group, in which members help each other, survives

Each concept entails at its basis trust. We trust our family, our group, our countrymen, those with
whom we had a lot of shared experiences and those we heard good things about.
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Figure 1.1: Evolution of the economy

1.1.3. Economics
Old: needs to be improved Trust also plays a major role in our economic system and has been for the
the evolution of economy as shown in Figure 1.1. In the pre-industrial age, most economy and trade
was done in local communities with families that trusted each other over generations and traders that
returned year after year. During industrial and post-industrial age companies have largely replaced
local producers and are trusted by millions of customers based on their brand name. Nowadays, in the
information age, internet companies allow people to connect, trade and cooperate directly, examples
being eBay for trading physical goods, AirBnb for sharing houses and Uber for ride-hailing. How trust
and the lack of it influence trade and markets has been studied in the well-known paper by Akerlof [4].
He describes the information asymmetry between seller, who knows the quality of the goods which
will be sold, and the buyer, who can only estimate that quality by some market statistic. The seller’s
incentive to sell goods of lesser quality than the average statistic leads to a decreasing statistic and
thus price which in turn decreases the quality of the goods sellers are willing to offer for that lower price.
Hence the market breaks down. Akerlof describes institutions to solve this problem namely institutions
such as guarantees, brand names and certifications. These are trust inducing institutions and can be
generalized as reputation systems. If the sellers sell goods to many people and those people report
or gossip the good quality of what they have bought, others can trust those sellers and both seller and
buyers will thrive. On the other hand a bad reputation will lead to a seller getting out of business as
buyers will mistrust. This closes the gap to the work of Nowak as this reputation is what makes indirect
reciprocity possible: the seller is not taking advantage of the buyer’s inconvenient situation but the
buyer cannot directly return that favor. Only by gossipping the event to other potential buyers who are
then more willingly to buy from the seller is the reciprocity circle closed. [16]

1.2. Digital trust
Old: needs to be improved These analog, gossip-based reputation systems are what guide our de-
cisions in buying cars, new or used, at which bank we store our money and at which restaurant we
should have dinner. But reputation systems are also prevalent in the digital world: we make our deci-
sions in buying used goods on eBay, renting a house to a stranger (or from a stranger), getting into a
stranger’s car (what mum told us not to) based on the reputation of the partner. The sharing economy
or collaborative consumption is the rising star of economic concepts in the information age and it is
power by reputation. A company offers a platform on which the two sides of a trade or transaction
can find each other. With each encounter both parties can rate that interaction and it becomes part
of their history. With a longer and more positive history the value of a profile increases as users see
the reputation as security for a good interaction and are willing to pay for it. However, there are rea-
sons for concern. What if the platform changes their rules in an almost unacceptable way or abuses
the personal data their users have entrusted them with? Users cannot take their reputation and data
to another platform because their reputation is actually owned by the platform facilitating the trades.
Such abuses in which trusted companies act wrongly have been happening in many times in the past,
examples being the dieselgate [1] and the facebook/cambridge analytica scandals. [2] These scandals
show that even though millions of users trust them, central institutions do not necessarily serve their
customers or clients.
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1.3. Universal mechanism to create trust
Old: needs to be improved We envision a future in which collaborative consumption is possible without
any intermediator. This future requires a reputation system which is application agnostic, owned by
noone and ruled by everyone. A distributed reputation system as a layer directly on top of the internet.
However this poses some challenges from a technical point of view. Distributed system are intrinsically
hard to control and regulate, which is both blessing and curse. No party can impose unfair rules on other
users but it is also hard to prevent malicious users from sending wrong information across the network.
[10] reviews state-of-the-art reputation systems and finds that all commercial reputation systems are
centralized. Some of the scientific reputation systems are decentralized like EigenTrust [12], P-Grid
[3] and RateWeb [13], yet they have not been proven to work in settings where high throughput, global
scaling are required which is the case for a global reputation system. Distributed, secure and globally
scalable systems remain an unsolved problem.

1.4. TU Delft Blockchain Lab research
The ambition of creating the first global trust system is realized at the Blockchain Lab of TU Delft, which
is the research group in which this thesis was created. The lab has a strong focus on exploring new
concepts, implementing them and testing them in production grade software.

The research group has great experience and a solid track record in the field of distributed work
systems. Especially peer-to-peer file sharing system have been studied, first and foremost the in-
ternally developed Tribler3 application. Tribler is a client for the BitTorrent protocol. It offers many
improvements over conventional BitTorrent clients like improved privacy and security, streaming and
reputation management. It has been the testbed for algorithms of bachelor, master and Phd students
for ten years with 1 million downloads in that period. In those years of research several milestones have
been reached. In [14] we have solved the free-riding problem in the peer-to-peer file-sharing context
with a reputation system that tracks uploads and downloads. With TrustChain [17] we have created
our own blockchain fabric for bandwidth as a currency which builds on the previous work and adds
tamper-proof recording and immutable history to the reputation system.

The problem of peer-to-peer file sharing systems maps well onto the trust domain. Users of Bit-
Torrent clients download from other users who upload data. Downloading data has benefit to users
because they are interested in the content, however uploading has no obvious advantage. It is only
necessary to keep the content available for others. There is an obvious incentive problem, a tragedy
of the commons. A free-rider can download without uploading, thereby consume resources without
contributing. The problem can be solved through a trust system. By recording the behavior of each
user and making it public a reputation can be assigned to each user which represents their resource
usage. Users that contribute a lot increase their reputation while downloading decreases that repu-
tation. Other users are able to inspect that past behavior of any potential partner and use it for their
decision whether the partner deserves a contribution.

The recording of file transactions and security of those records is facilitated by our blockchain fabric
TrustChain [17]. TrustChain is a multi-chain fabric which lets each user create an own chain. It is
therefore built for horizontal scalability and unbounded throughput. By design, TrustChain enables the
creation of trust in any application context. The solution is implemented in Tribler and has been used in
production for more than a year as of 2018. The implementation details of TrustChain will be discussed
more in Chapter 3.

The great scalability of TrustChain comes at the cost of security. The architecture allows for attacks
to be detected but the system can only be secured if honest users engage in that defensive behavior.
This can only be ensured through incentives: agents should never be able to gain an advantage by
circumventing the rules.

1.5. Contribution
In this work we study a mechanism to ensure the proper dissemination and verification of transaction
records. In any trust system, the transaction records are the basis for the reputation of users and thus
the trust users have in each other. With the records, also the reputations itself are spread, leading to
more agreement of reputation and thus higher value. Also defending the reputation records against
3https://tribler.org
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attacks makes records more credible and dependable, opening applications for TrustChain with higher
requirements for security.

We will enlarge on the problem description in the next chapter. Afterwards the problem will be
defined formally and analyzed in the bounds of the definition. Before proposing a solution, some existing
approaches for recording and dissemination of data will be discussed in chapter. Next, we define a
solution based on the TU Delft blockchain fabric TrustChain and propose a specific mechanism of using
such a fabric. Finally, we prove the correctness and scalability properties of the fabric in experimental
analysis, before concluding and making suggestions for further research.





2
Problem description

Our audacious ambition is to create a global trust system. Such a trust system as a public, free and
non-profit utility is a key element to enable the next-generation online applications. In the previous
chapter we have introduced trust research and the influence on many real-life subjects. In this chapter
we explain in more detail the problem at hand.

2.1. Model of trust and reputation
• Trust, Reputation and reciprocity have a circular relation ship

• Trust depends on Reputation

Figure 2.1: Circular relation between trust, reputation and reciprocity. Source: Mui, 2002 [15]

2.2. System architecture
As of today, no single algorithm or architecture can provide a solution that conforms with all these
requirements. Only by combining multiple components and iterating their design can we approach
a reputation layer that is able to conform with the requirements. This layer needs to combine these
components:

Identity. At the lowest level there is the identity layer that ensures an entity is identifiable for other
entities in the network. The most basic version of this is a simple public- private key pair for signing
and encrypting data. But creating a new key pair is cheap, therefore this is not enough and in a later
iteration of this identity system digital entities will need to be bound to real-world, verified entites like
government-issued passports or biometric identifiers.

Communication. The internet creates a global communication network with high connectivity across
the world but it is currently not in a state that direct communication between devices is straight-forward.
The large increase in connected devices expended the address space of IPv4 and IPv6 transition has
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been slow, thus network address translation creates subnetworks with local adress spaces. Connection
from such a subspace to a server with a public adress is still simple like it is the case with most client-
server applcations on the internet, but direct communication when both devices are behind NATs is
still not standardized. Also new routing solutions are required to ensure communication based on the
actual identity layer mentioned before instead of the IPv4 and DNS identity layer.

Record and distribution mechanism Reputation is based on feedback on interactions. This feed-
back needs to be recorded and distributed, such that other entities in the network have a chance to
respond to the history of feedback of their peers. Without a central entity which is aware of all trans-
actions, each node will record some transactions. It is a challenge to create a global record which is
correct, tamper-proof and well distributed across the network.

Interpretation of records Based on the recorded feedback each agent can interpret them to form
an opinion about other nodes. For a reputation system the records are seen as positive or negative
behavior and each agent can output a ranking of reputations for all peers this agent knows of. Those
rankings are calculated based on a reputation function. In the past our research group has analyzed
different reputation functions like NetFlow [17], MaxFlow [14] and PageRank [19].

Application layer We imagine that the reputation system we are developing can be used for any type
of application that requires two entities to trust each other. This reputation layer will be accessible for
anyone however no application will be able to delete data or lock data into their proprietary platform.

Each layer adds another level of protection: if identities are expensive and hard to create, fake
identities will be less easy to create, protecting the system against spamming. Creating an immutable
record and distributing that information to everyonemakes knowledge tamper-proof, unchangeable and
forever, making all information reliable. On the interpretation layer additional securities can be enabled:
we envision a concept of locality to secure against distributed attacks with global collaborations of
malicious nodes - if we only trust agents with a certain level of latency attackers can only choose from
nodes in the vicinity and supply of those nodes is limited.

2.3. Value of reputation
The concept of trust is however vague. In the analog world, trust is more of a feeling than a rational
calculation, yet computing systems are deterministic, precise and rational. The vagueness partly stems
from the subjective interpretation of actions which in the digital system is the reputation function used,
but also from the difference in what each person knows about another one, or in digitally speaking
subsets of information that each one agent has. Yet, from a practical point of view it would be desir-
able if people could agree on the reputation and trustworthiness of agents, because it makes actions
predictable and gives reputation its value.

To see this we should go back to the discussion of indirect reciprocity, which is one of the five forms
of fostering cooperation which were introduced in chapter 1. People act pro-socially at a personal cost
in order to build an altruistic reputation which is rewarded with third-parties acting pro-socially towards
them. Reputation is valuable because people with higher reputation can expect more cooperation in
future interactions. This indirect reciprocity mechanism works as long as agents agree on what is good
and what is bad reputation. Once there is ambiguity about the reputation of agents this value decreases
as even people with a bad reputation could be seen as good people by others due to that ambiguity.
Also only if reputation has actual value to agents, we can ensure pro-social behavior in the network.
Therefore we need agreement on the reputation of agents.

Agreement on the interpretation layer can be achieved by defining a function for all agents to use
which calculates a quantitative reputation from the history of feedback. Usually this history is public,
visible to everyone, however this is difficult to achieve in a distributed system. Here the second problem
comes into play. The information a network node acts upon is a different subset of complete information
on the network for each agent; each agent is in a different state. This situation is undesirable but
inherent to systems with the requirements stated in the previous section. Thus, a first step towards
agreeing on the reputation of agents is if agents agree on which data should be used as an input to
the reputation function. In other words we have to make sure that agents disseminate their knowledge
and obtain knowledge from other agents such that information is well distributed and available.
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However, in most contexts sharing and obtaining information comes at a cost which is not negligi-
ble. Thus agents may be reluctant to spend resources without any direct reward. There is an obvious
network effect to agents knowing more about their peers but agents can also gain reputation by co-
operating with agents with low reputation. Thus there is no incentive to obtain a better view of the
network.

2.4. Research question
The design of a global trust system bears many challenges. A lot of research has gone into the de-
velopment of algorithms for calculating trust and models for the behavior of agents in the presence of
trusted and distrusted agents. However, we found that the basis for trust is reputation, which in turn
is based on the records of encounters. Yet, recording, distributing and securing the information about
encounters in distributed systems is an underexplored topic and has only little literature published in
the scientific community.

Consequently, the question that we are trying to answer is therefore:

How to record, disseminate and protect the records of interactions in a global trust system?

2.5. Related work
• First and second generation crypto currencies

• Reputation systems

• Dissemination mechanisms

• Conclusion nothing does it all

2.6. Agent behavior through incentive
2.7. Requirements of reputation systems
Reputation systems appear in many forms but we are concerned with their digital form as only digital
networks can reach global scale with fast information distribution. Reputation systems have previously
been formally defined to include at least three components [20]:

• Long-lived identities

• Recording and distribution of feedback about interactions

• Use of feedback to guide interactions

We need entities to be identifiable and in existence for a long time to ensure that future interactions
between known entities are likely. If changing of identities is easy, a bad reputation is easily discarded
and exchanged for a clean slate. We need to capture and distribute feedback of interacitons such that
entities are aware of the history and reputation of other entities on the system. Finally, users should
actually make use of the feedback on not just ignore it.

2.8. Requirements of global trust system
Next to the requirements of reputation systems we also have requirements for specific usecase of a
global reputation system without centralized institutations.

• distributed: no entity should be owner of the reputation of all people, no single point of failure
should exist

• scalable: future applications similar to those that exist today with centralized reputation systems
should be able to handle billions of users.

• robust against strategic manipulation: once reputation increases in worth users of the system will
try to exploit the system by attacking it, alone or by colluding and the architecture needs to be
robust against such attacks
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This introduces additional challenges: enforcing long-lived identities is even harder without the
assumption of a trusted central entity that can check the validity of new entities. Also creating a central
distributed record with synchronization at scale is a topic of ongoing research and generally seen as
an unsolved problem. Finally, reputation system in general and distributed systems specifically are
intrinsically weak in protection against malicious behavior, although they are robust in terms of complete
failures as no single point of failure exists.

2.9. Scope
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Formal Model Definition and

implementation details
The discussion of distributed trust systems requires a well-defined framework. In this chapter we for-
mally define a model in which we can analyze a new information dissemination mechanism. Also, we
explain in detail how the previously introduced TrustChain architecture is implemented. This should
guide the reader towards a proper understanding of the practical intricacies of our system.

We shall first reintroduce the notation defined by Mui in previous work on the subject of reputation
systems. Afterwards we apply that notation to the TrustChain solution which will be the basis of the
solution defined in later chapters of this thesis. Finally, we can specifically point out the shortcomings
of that solutions. The next chapter will then introduce a new extension of TrustChain which will tackle
those shortcomings.

3.1. Basic model and notation
For this model we use the notation that was defined byMui in [15]. The goal is to develop the notation for
a model of trust and reputation in a social network. Mui developed this notation to study a computation
model for trust and reputation which fits the subject of this work perfectly. For the sake of simplicity
we will further simplify the model and ignore the context dependence of the social networks, so the
definitions assume the reputation and trust are about a single context.

We first define a social network in general.

Definition 1 (Social network). A social network is a society of a set of agents 𝐴 = {𝑎ኻ, 𝑎ኼ, … 𝑎ፍ} that
allows for agents to communicate and interact with each other. A social network has size 𝑁 if there are
𝑁 uniquely identifiable agents 𝑎። in 𝐴.

This definition of a social network can include any society, so it could be the world wide economy,
or Facebook, but from the previous discussions it should be clear that trust and reputation always act
in a social network. Without the context of the social network those concepts would be of no use. In
most global scale networks we can not assume full observability, therefore Mui defines, with reference
to the work of Granovetter [8], the embedded social network.

Definition 2 (Embedded social network). An embedded social network with respect to agent 𝑎። is the
unique society of agents 𝐴። that agent 𝑎። is aware of at certain moment in time.

It should be clear from definition 2 that we make no full observability assumption. Each agents acts
within the subjective embedded social network.

The social network makes it possible for interactions to happen between agents. We call those
interactions “encounters”. For the moment we use the simplified definition from Mui and assume that
during an encounter both parties chose an action from the set of cooperation and defection: 𝛼 ∈
{cooperate,defect}. We will later extend this definition to the usecase of Trilber. As explained before
(WHERE?) this fits the game of Prisoner’s Dilemmawhich is the theoretical basis for reputation systems
in general.

11
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Definition 3 (Encounter). An encounter 𝑒 ∈ 𝐸 = 𝛼ኼ is an interaction between agent 𝑎። and agent 𝑎፣
such that 𝑎። executed action 𝛼። and 𝑎፣ executed action 𝛼፣.

An agent’s encounters are the evidence on which other agents build their opinion of that particular
agent and therefore are the building block for trust. An agent’s behavior in the past encounters of an
define whether other agents will trust that agent or not. Formally Mui defines that history as follows.

Definition 4 (History). 𝐷፣,። = {𝐸∗} is the knowledge that 𝑎፣ has about previous encounters of agent
𝑎።, which include at least the direct interactions between the two agents but can also include other
nteractions of 𝑎። which were “observed” by 𝑎፣.

That fact that encounters happen within the embedded social network that connects the two parties
in the encounter means that the history does not necessarily include all encounters by a certain agent.
With the definition of the history it is possible to define the two concepts of interest, reputaiton and
trust. Consider the case that an agent 𝑎። is determining the reputation of another agent 𝑎፣ which is
in the embedded social network 𝐴።. The reputation of 𝑎፣ in that embedded social network 𝐴። is solely
depended on the history 𝐷።,፣, the encounters which 𝑎፣ took part in and are known to 𝑎። ’s embedded
social network. Mui then defines reputation 𝜃።,፣ simply as a value between 0 and 1, where a low value
means that 𝑎። thinks 𝑎፣ has a low intention to reciprocate and a high value means the opposite.

Definition 5 (Reputation). 𝜃።,፣|𝐷።,፣ ∈ [0, 1] is the reputation of agent 𝑎፣ as seen by 𝑎። given the history
𝐷።,፣.

Given this definition we are also able to define the “true reputation” 𝜃ᖣ which is the reputation as
calculated using the complete history of all agents encounters, or 𝜃ᖣ፣|𝐸 ∈ [0, 1]. Slightly deviating from
the model of Mui in order to stay closer to previous work on the specific usecase of the TrustChain
architecture we will define reputation as a direct function of this history.

Definition 6 (Reputation function). 𝑅 ∶ 𝐷 × 𝐴 → 𝜃ፍ is a function that maps from the known history of
encounters 𝐷 to a reputation value 𝜃 for each of the 𝑁 agents in 𝐴.

Finally, the definition of trust as given by Mui is the expectation an agent 𝑎። has that another agent
𝑎፣ will reciprocate actions in a future encounter.

Given the above definitions a circular relationship between reputation, trust and reciprocity can be
induced. Acting reciprocatively in an embedded social network increases an agent’s reputation, which
in turn increases the trust other agents have in that agent. More trust should then lead to other agent’s
acting reciprocatively which closes the circle.

However Mui states explicitly that a “decrease in any of the three variables should lead to the re-
verse effect”, thus this circular relationship only holds true if the history of actions is to a large amount
transparent to other agents. Also if agents act purposefully wrong and not according to the reputation
they calculate the effectivity of the system breaks down. In practice this boils down to problem of a
tamper-proof record of encounters and the dissemination of information about those encounters. The
next section discusses how this model can be implemented in a system architecture.

3.2. Implementation of the model in TrustChain and Tribler
The definition of the model given in the previous section is from a theoretical point of view for a general
reputation system. It is not immediately obvious how this model applies to an Implementation of a
distributed reputation system with a specific application. In this section we shall shed light on how the
TrustChain architecture and its application context Tribler fit this model. The results are summarized
in Table 3.1.

3.2.1. Application context: Tribler
In order to fit the model to the application context of Tribler, which is one context in which TrustChain
can be used we have to map the concepts given in the section 3.1 onto the concepts in the torrent
client context.

An agent in the model of Mui will generally refer to an instance of the Tribler client running on
a machine of a user. A single user can therefore run multiple agents on the same machine. Each
instance of the client has a unique identifier. Instances of a client in a distributed system are generally
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Table 3.1: Mappings of the theorical model of trust systems to the higher layers of trust systems

Definition Agent Encounter Action Reputation Trust
Mui individuals in

a social net-
work

Event be-
tween two
agents

{ cooperate,
defect }

Value be-
tween 0 and
1 showing
the percep-
tion that
suggests
an agent’s
intentions
and norms

Expectation
that an
agent will
reciprocate.

Tribler Instance of
the Tribler
client

Transaction
of data

Two real
numbers
showing the
upload and
download
during an
encounter

Summed
upload and
download
over history

Subjective
value cal-
culated by
trust function
based on
reputation

TrustChain

also called nodes. Encounters between agents, in this case the Tribler clients, are transactions of data
on the torrent network or relaying of data for the onion routing. In both cases one agents uploads data
and another agent downloads data, so the action space is a real number, where positive values refer
to the amount of data uplaoded and negative numbers to the amount of data downloaded.

The mapping of data upload and download is somewhat difficult to map directly to the cooperate and
defect actions, and therefore good and bad reputation. In general downloading is seen as consuming
value and uploading is seen as contributing value to the network. However Tribler’s additional layer
of security adds relaying of data as an action to perform and in that case relaying, uploading and
downloading the same amount of data, should increase the reputation while downloading more than
uploading should decrease the reputation. Qualitatively, agents will have a good reputation if they
contribute, that is upload, and relay a lot.

Finally, the difference between trust and reputation is not very straightforward either. However,
while the reputation is a well defined number, trust can be seen as a value that is more depended on
the network structure. As an example, imagine that we are evaluating our trust in two nodes with a
similar reputation, that is a similar amount of uploaded and downloaded data. One node has many
interactions with different nodes, most of which are known to us, while the other node has had only a
few large interactions with previously unheard of nodes. Taking the definition of Mui as basis for trust,
our expectation of reciprocity will be higher for the node that had successful interactions with nodes
that we had successful interactions with than for the other node. This fits the definition made in [11],
who state that “Trust systems produce a score that reflects the relying party’s subjective view of an
entity’s trustworthiness, whereas reputation systems produce and entity’s (public) reputation score as
seen by the whole community.” Therefore we can define a score, calculated from a certain (subjective)
point of view in the network based on the known repuatation of nodes, as trust. Such functions have
been defined in previous work, for example NetFlow in [18].

3.2.2. Implementation context: TrustChain
Similar to the application context the model can be mapped to the implementation layer, that is the
TrustChain architecture. This way we created a relation between the most basic theoretical layer of
reputation systems, the computational definition by Mui, the implementation layer all the way to the
application layer of Tribler. This allows for discussions of the problem in the context of each of these
layers without loosing the well-definedness property of concepts.

TrustChain is an implementation of a distributed blockchain-based database specifically designed
to create trust globally between relative strangers in a digital social network. In TrustChain agents are
simply public- and private key pairs. Each agent can be identified by the unique public key which is
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used in each encounter. Each agent records transactions, in which that agent takes part, as a block
on a private chain. The transactions are the equivalent of encounters in Mui’s notation.

Definition 7 (Transaction block). A transaction block that describes a transaction between agent 𝑎።
and 𝑎፣ can be defined as a 6-tuple 𝐵ፓፗ(𝑡) = ⟪tx, pk። , seq። ,pk፣ , seq፣ ,hashፁ(፭ዅኻ)⟫. This is still wrong. We
either have to introduce the block proposal/agreement scheme or include two hashes here. where:

• tx contains the actions performed during the transaction

• pk። is the public key of the initiator of the transactions, agent 𝑎።
• seq። is the sequence number of the block in the history of interactions of agent 𝑎።
• pk፣ is the public key of the responder of the transactions, agent 𝑎፣

• seq፣ is the sequence number of the block in the history of interactions of agent 𝑎፣

• hashፁ(፭ዅኻ) is the hash of the previous block

As TrustChain is designed to be application agnostic, the possible actions in encounters are not
pre-defined but can be anything that can be described by static data. If TrustChain is applied to the
Tribler context a transaction block records the amount of data uploaded and downloaded between the
two parties of the encounter. Trust and reputation are not directly represented in TrustChain as the
system itself is only a way to record encounters, not to interpret them. The interpretation of records of
encounters is left to the application context. Still, just like in the trust function defined previously we can
assume that in a TrustChain based system the set of encounters, which in TrustChain corresponds to
the observed transactions is the single input to the function.

The system does allow to define the embedded social network, the society in which an agent acts
as defined by Mui. The embedded social network of an agent 𝑎። in the TrustChain fabric are the agents
𝐴። which agent 𝑎። has directly interacted with, that is the public keys that agent 𝑎። is aware of and
knows to exist. This also means that in the case of TrustChain the embedded social network can be
described solely by the set of encounters 𝐸። of an agent. However in a global network that embedded
social network is usually a very small fraction of the complete social network. This means that chances
are low for an agent to be aware of the good behavior of other agents which is one of the fundamental
properties that a reputation system needs to fulfill. This brings the discussion to the problem that was
described in chapter 2.

3.3. Strategic manipulations
The model of Mui can be mapped onto the TrustChain implementation context in a straight-forward
fashion. We showed that in TrustChain, an agent’s embedded social network and the agent’s true
reputation can be inferred simply from the complete set of block that the agent had. Blocks are the
receipt of an encounter between two agents.

If the trust system works as expected, a good reputation should have value to agents. All agents
on the network attempt to obtain a good reputation and be seen as a trusted partner. As such their
behavior should be meticulously agree with the rules. Yet, if the value is large enough and behaving
well comes at a large enough cost, agents will aim to bend the rules or even break them in a smart way
in order to get the good reputation for free. As a designer of the trust system it is essential to predict
the possible ways of manipulation and prevent them. In this section we will define several known types
of attacks on trust systems and if applicable define how TrustChain can prevent them.

3.3.1. Forking
Forking is one of the most well-known attacks of blockchain based systems. In the cryptocurrency
context it is also known as double spending. As defined in Definition 8 an attacking agent sends two
conflicting transactions to two different partners. As long as the two partners are each not aware of the
other version of the transaction, both transactions are accepted. This practically allows the attacker to
reuse some reputation that normally would already have been lost or overwrite a transaction that would
otherwise lower the attacker’s reputation.
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Definition 8 (Fork). An agent 𝑎። creates two blocks 𝐵ፓፗ and 𝐵ፓፗᖤ , with sequence numbers seq። and
seqᖣ። and partner keys pk፣ and pkᖣ፣, respectively. 𝑎። creates a fork if seq። = seqᖣ። and pk፣ ≠ pkᖣ፣.

The fact that agents in the TrustChain fabric are solely responsible for their own chain forking is
easy and cannot be prevented. However in certain circumstances the attack can be detected, putting
a negative mark on the attacker. Namely, if one of the agents who were subject to the attack learn
about the other version of the block, they can see that the attacker signed two conflicting blocks. This
creates a proof-of-fraud and the agent can ignore the attacker in the future.

3.3.2. Transaction hiding
Once agents have a longer history they will have records of positive and negative encounters. A
malicious agent then might try to hide any records of negative encounters, thus boosting the trust other
have in the attacker. The architecture of TrustChain is made to make such an attack detectable. The
blockchain of the agent creates a tamper-proof, irreversible order for all transactions. Another agent
can therefore require the complete sequence of blocks of a partner before interacting. Any missing
block will be seen as a malicious request.

The attack can also be mitigated if the partners of the attacker, who also own the blocks that proof
the negative encounters of the attacker, disseminate that information to their peers. As such agents
may already know about the true reputation of the attacker and decide to ignore that agent in the first
place.

3.3.3. Whitewashing
Agents that have lost reputation in a significant amount of transaction may decide to create a new
identity for themselves. Thus they can rid themselves from the bad reputation and start fresh. This
type of attack is called whitewashing. In the currently deployed version of TrustChain in Tribler this
attack cannot be prevented as the software is free and new agents do not need registering with any
central institutions.

Still the impact of such attacks can be limited by having some mistrust of new agents joining the
network. In that case a new agents need to “pay their dues” before being accepted by the network as
equals.

3.3.4. Sybil attack
One of the most serious attacks on trust systems is the Sybil attack. In a Sybil attack the attacker
creates a set of new accounts, called the Sybils. Together with the attacking agent the set of agents
is called a Sybil region. Those Sybils create transaction records between each other without actually
performing the transactions with the goal of boosting the reputation of one of the agents in the Sybil
region. The attack is successful as honest agents cannot distinguish between fake and real transaction
records. That also makes the attack hard to prevent.

Multiple ways have been explored to prevent this attack. One way is to analyze the network topology
and use it to detect Sybil regions. Another way is to increase the cost of registering new identities in
the system.

3.3.5. Other attacks
Other obvious attacks are for example a direct tampering with a block. Such attacks can be detected
in a straightforward way by simply recalculating the hash and checking with the following block and the
signature of the agents.

3.4. Dissemination and verification of records
The possible attacks mentioned in the previous section show that the TrustChain architecture, while
allowing honest agents to detect malicious agents, is not secure in a preventive manner. The security
relies on honest agents to assemble transaction records of other agents and check them against their
current knowledge. We call these two processes dissemination and verification of transaction records.
In this section the problems of these process will be discussed that need to be solved in order to fight
any malicious behavior in the network.
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3.4.1. Complete synchronization and scalability
All of the dissemination mechanisms mentioned in [9] consider the goal of complete information ex-
change. This would also be a disireable situation in the context of reputation systems. If each agent
has knowledge of all encounters, they could calculate the true reputation of all agents and simply agree
on whom to trust. The system would also be secure against malicious behavior.

However, a global reputation system that tracks all interactions of all agents creates a huge amount
of data which would need to be transmitted and stored on all agent’s devices. This seems like an
unfeasible target. Instead a “high level” of information dissemination should be strived for.

It should be clear the whether the state of complete synchronization can be achieved depends on the
rate at which new interactions are recorded and the rate at which information dissemination happens.
In fact, Bitcoin achieves full synchronization (except for the newest blocks which are seen as “not yet
confirmed”) through restricting the block time and size. With a block size of 4MB and a 10 minute block
time, there is enough time between new blocks such that nodes can synchronize with the updated state
of the system.

3.4.2. Second-order manipulative behavior
Another intricacy of distributed system is that the designer of the system has no control over the actual
behavior of agents. That is why incentives need to be put in place in order to make it disadvantageous to
deviate from the designed behavior. Given the right incentives and rational agents that try to maximize
their value function the designer can be sure that no misbehavior will spread as it would decrease the
value function of those agents.

The problem with the TrustChain system is that while it’s security and validity as a trust system rely
on the dissemination and verification of data, there is no incentive in place to guarantee that agents
engage in any such activity. Actually the opposite is true when assuming that data storage, computa-
tion power and bandwidth are costly resources in the eyes of agents. It is actually disadvantageous
for agents to observe interactions of other agents, store them and verify them against their previous
knowledge in order to detect any malicious behavior. It is therefore possible to free-ride, not in the
context of an application like Tribler, but in terms of information dissemination: agents can decide to
not share and verify information and still take part in the network as valid agents.

We can thus define another class of malicious behavior which we will call second-order manipula-
tions which is distinct from those mentioned in Section 3.3, which we will refer to as first-order manip-
ulation. Agent behavior that does not immediately violate any rules for data creation but rather does
not help the network defend itself against attackers falls into this new class. Specifically we define two
such manipulations: dissemination free-riders and verification free-riders.

Definition 9 (Dissemination free-rider). A dissemination free-riders behave honestly except that they
do not actively distribute any transaction records to peers.

Definition 10 (Verification free-rider). A verification free-riders behave honestly except that they do not
verify any data that they receive from the peers.

Both types of second-order manipulators attack the security of the network through passively not
helping to defend it. The immediate effects of single agents behaving in this manner are small to non-
existent; the network security is held up by the honest majority and attackers will still be identified. The
second-order manipulators ride free on the security provided by their peers. However, should a large
fraction of the network realize that free-riding is possible the security could be seriously be harmed.

3.4.3. Creating incentives
In order to solve the problem we need to realize how incentives can be created. Bitcoin solves the
incentive for sharing transaction blocks by given nodes a reward for mining a block. Only if the node
broadcasts the block, can the award be claimed. Also other nodes want to stay updated on the state
of the chain in order to mine a block on the most recent chain as new blocks for shorter chains will not
be accepted.

Instead of giving awards in order to encourage behavior, we can also punish nodes in order to
discourage bad behavior. For example, double spending is discouraged because the records of trans-
actions make the attack detectable such that other agent can punish the attacker.



3.4. Dissemination and verification of records 17

Another way would be to combine the sharing of information with the reputation system built on
top of TrustChain. In that way good reputation can not only be built through behaving well in the
application context but also by being a good agent in the TrustChain network. Helping the network to
defend against malicious nodes by obtaining and spreading information should then be rewarded.

All ideas require a feature that TrustChain does not offer at the moment: the recording of exchanges
of information. All we have presented before about TrustChain is concerned with transaction in the
application layer but not the record layer. However, in order to reward the exchange of information or
punish free-riding on this layer, this information needs to be stored in a tamper-proof manner just like
the transactions. That is the state of an agent, which we argued can be described by the encounters
that the agent had in the past, should include also the information exchange behavior.





4
Internal agent state transparency

In the previous chapters we analyzed the problem of information dissemination of data for a distributed
repuation system built on the architecture of TrustChain. We have argued that in order to make the
dissemination strategy proof, which is neccessary to guarantee that no agent deviates from the desired
behavior without being detected and properly dealt with, we need to publicly record the action of sharing
knowledge. In this chapter we propose an extension of the TrustChain architecture that enables strat-
egy proof information dissemination and validation in a distributed TrustChain based network without
deminishing the scalability properties.

4.1. Concept proposal
In the previous chapter we formally defined the internal state of an agent as not only the encoutners
of agent’s own encounters but the complete knowledge of the network the agent has. That knowledge
can be represented by the set of encounters the agent is aware of. Based on this we can define a
desired property that a fabric like TrustChain needs to fulfill in order to provide strategy-proof sharing
of information.

Definition 11 (Interal agent state transparency). The internal agent state is transparent, and therefore
this property is fulfilled, iff:

• an agent 𝑎። can require an agent 𝑎፣ ’s internal state from any point in time

• an agent 𝑎። can determine whether an agent 𝑎፣ is lying about her internal state

When the property is fulfilled there should be an exchange protocol after which an agent is aware
of all information the other agent has as well as a verfication protocol which validates that the claimed
internal state is indeed valid and complete.

In order to achieve internal agent state transparency for TrustChain, any exchanged information
needs to be public. We will later describe the incentive for agents to actually perform this exchange.
So, conceptually a record exchange can be defined as follows.

Definition 12 (Record exchange). A record exchange 𝑋፤ of size𝑚 contains a list of transaction blocks
𝑋፤ = {𝐵ፓፗ፤,ኺ , 𝐵ፓፗ፤,ኻ , …𝐵ፓፗ፤,፦}.

Finally, the complete state can be described by the union of performed transactions and transactions
obtained through exchagnes.

Definition 13 (Internal state composition). The internal state 𝑆። of agent 𝑎። with true transaction history
𝐷ᖣ። and 𝑘 exchanges can be inferred as follows.

𝑆። = 𝐷ᖣ። ⋃{𝑋።,ኺ⋃𝑋።,ኻ⋃…𝑋።,፤}
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4.2. Implementation of internal agent state transparency in TrustChain
In the previous section we conceptually defined the internal agent state transparency for TrustChain.
This section will describe how those concepts can be implemented in a working distributed software
system.

First and foremost, a new type of record needs to be created in which no application specific transac-
tions, but system transactions of other records will be documented. We therefore extend the TrustChain
architecture (described in detail in WHERE?) with exchange blocks

Definition 14 (Exchange blocks). An exchange block𝐵ፄፗ = ⟪exup, exdown, pk። , seq። ,pk፣ , seq፣ , sig። , sig፣ ,hashፁ(፭ዅኻ)⟫
is defined as a tuple, where:

• exup is the top hash of the list of hashes of blocks the initiator 𝑎። shared with 𝑎፣

• exdown is the top hash of the list of hashes of blocks the responder 𝑎፣ shared with 𝑎።

• pk። is the public key of the initiator of the exchange, agent 𝑎።

• seq። is the sequence number of the block in the history of interactions of agent 𝑎።

• pk፣ is the public key of the responder of the transactions, agent 𝑎፣

• seq፣ is the sequence number of the block in the history of interactions of agent 𝑎፣

• sig። is the signature by the initiating agent 𝑎።

• sig፣ is the cryptographic signature by the responding agent 𝑎፣

• hashፁ(፭ዅኻ) is the hash of the previous block

Each exchange block describes a pairwise exchange of blocks. The exchange is deliberately made
bidirectional in order to provide an incentive for both agents to sign the exchange and keep to the
promise of publishing the exchange on their chain. Instead of publishing the exact blocks exchanged,
a list of block hashes is created and the hash of that list is published in the exchange block. One hash
for the block transferred from agents 𝑎። to 𝑎፣ and another hash for the blocks transferred in the other
direction. This reduces the amount of data put directly on the chain, however it makes it impossible
to infer the internal state of the agent from the chain only. That is why each agent internally needs to
keep track of the actual content of the exchanges.

Definition 15 (Exchange storage map). Each agent keeps track of the content of all exchanges with
an exchange storage map 𝐹 ∶ hashፁᐼᑏ(፭)− > 𝑋(𝑡) which maps the hashes of exchange blocks to
the respective record exchange, so the list of blocks the agent received in the exchange described by
𝐵ፄፗ(𝑡).

The combination of exchange root hashes and the exchange storage kept by each agent enables
tamper-proof exchange of information. This enables agents to determine the state of another agent.
Consider an agent 𝑎። that tries to determine the state of agent 𝑎፣. Agent 𝑎። requests both the chain
and the exchange map from agent 𝑎፣. If 𝑎፣ does not respond, agent 𝑎። is not able to determine the
state and has to assume that 𝑎፣ does not respond in order to hide malicious behavior. In that case 𝑎።
will add 𝑎፣ to the list of blocked agents.

If both the chain and exchanges are available, the agent 𝑎። loops through the chain. Each block
of the chain is added to the state and if the block is an exchange block, also all blocks that were
transmitted during the exchange documented by that block, which can be looked up in the exchange
map are added to the state. The result is the complete internal state of agent 𝑎፣. The algorithm is
described formally in algorithm 1.
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Algorithm 1 Determining the internal state of another agent
1: procedure determineState
2: 𝑎። ∶ Initiator
3: 𝑎፣ ∶ Responder
4: chain ← request_chain(𝑎፣)
5: 𝐹 ← request_exchanges(𝑎፣)
6: state ← []
7: if not chain or not 𝐹 then return false
8: for all B in chain do
9: if B is an exchange then

10: state = state ⋃𝐹(𝐵)
11: state = state ⋃{𝐵}

return state

4.3. Making sharing strategy proof
How is strategy proof even defined? We have described how the internal agent state transparency
property can be added to the TrustChain architecture, however this in in itself does not make dissem-
ination of information strategy proof. It only creates a tool to document information exchanges in a
tamper-proof manner. The next step is to use the knowledge about information exchanges conducted
by the agent to make decisions about future interactions.

One solution is to build a system internal reputation which is based on the amount of data shared with
other agents. Agents that exchange more data with other agents and initiate exchanges to obtain more
data should have increased reputation. Helping the system defend itself against attackers and making
information widely available would then be advantageous as other agents see the good behavior, have
a better opinion of that agent and share data with them.

Another solution is to define policies that require a certain amount of data exchange for each trans-
actions. Let’s say that the system designer introduces a policy which requires honest agents to only
interact with other agents that have at least one data exchange for each transaction they conduct. This
is simple to verify: the agent scans through the chain and counts the transaction and exchange blocks
and verifies that there are at least as many exchange as transaction blocks. Otherwise the agent will
simply not interact with that agent.

4.4. Possible ways to work around the security
In this section a few examples of maliciously acting agents will be analyzed theoretically. The same
will be done in experimental analysis with a proof-of-concept. We assume that all agents that interact
with each other also verify each other’s chain and internal state.

First of all, what the original TrustChain implementation allowed was to free-ride on information
sharing and verification. That is, even though honest nodes were polling other agents for information
on transactions and verified that no double-spends happend, other nodes were able to not do that and
still interact with honest agents.

Definition 16 (Lazy free-rider). We define a lazy free-rider as an agent that performs normal in trans-
actions but never performs an exchange of information on transactions.

In a network of honest agents, the lazy free-rider will quickly be found and blacklisted as that agent
will simply not have any exchange blocks in the chain.

A more elaborate way of free-riding is to exchange blocks and create exchanges but delete the data
as soon as it arrives.

Definition 17 (No storage free-rider). A no storage free-rider is an agent that does exchange data but
does not store the received data.

A no storage free-rider can only commit a few interactions before being detected as a fraud. Let’s
consider the first verification. The no storage free-rider agent only has the genesis block which is cheap
to share. Therefore the first verification will go through and an exchange block will be created. However,
the second verification is more difficult to pass as some information will have been received as recorded
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in the exchange block but cannot be conjured on request. Any further verifier should therefore find that
the agent is not able to provide the blocks of the first exchange recorded on the agents chain.

4.5. Making verification strategy proof - Verification of verifiers
Another way of free-riding on the original TrustChain architecture is to not actually validate any data.
Even if we solve sharing of data, agents can still save computing power by not scanning their peers
for malicious behavior in the hope that other agents on the network do perform the validations and will
inform them once they find something. The new extension makes it possible to detect this behavior in
case they fail to report a malicious transaction.

Definition 18 (Validation free-rider). An agent that does perform honestly in terms of transactions and
exchanges but does not validate the behavior peers is called a validation free-rider.

The proposed extension of TrustChain enables an agent 𝑎። to determine the internal state of agent
𝑎፣, that is obtain the list of all blocks of 𝑎፣. Consider that 𝑎፣ is a validation free-rider and 𝑎። has
obtained 𝑎፣ ’s internal state. If 𝑎፣ has obtained the knowledge of a malicious transactions, for example
two conflicting blocks of a double-spend, 𝑎፣ will not have realized it as the validation has never been
performed. However 𝑎። is aware of all blocks that 𝑎፣ has and therefore also aware that 𝑎፣ should be
aware of the conflicting blocks if 𝑎፣ was honest. Now, 𝑎፣ ’s free-riding will be detected if 𝑎፣ has performed
an interaction with the agent resopnsible for the conflicting transactions. That is because any honest
agent would have detected the conflict and ignored that agent except for colluters or validation free-
riders.

4.6. Considerations of asynchronous transactions
In the previous discussion we have actually simplified the system to one in which each agent only per-
forms one transaction at a time. This makes it more straight-forward to understand the properties and
see that the extension does provide a strategy-proof dissemination. In a real-world system, depend-
ing on the use case, a user might need to quickly engage in multiple transactions and communication
delays do not allow to finish transactions first and then continue with the next. In previous work we
have shown how TrustChain can work in an asynchronous way, by splitting the transaction blocks into
a block proposal and a block agreement. This also creates additional complexity for the exchange
blocks as the asynchronous reception of blocks needs to be recorded in order to keep the property of
internal agent state transparency.

Definition 19 (Async exchange block).
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State consensus through anti-entropy

In the first chapters of this thesis we introduced the incentive problem of information dissemination in
distributed reputation systems. In the previous chapter we introduced an extension of the TrustChain
architecture that allows for agents in the network to obtain and verify each other’s internal information
state. But in order to achieve the goal of strategy-proof dissemination of information a tangible mecha-
nism is required that applies the advanced tools that the new architecture provides. In this chapter we
analyze one such mechanism which is based on the anti-entropy concept. We first describe the mech-
anism conceptually, then discuss the implementation details and finally elaborate on some intrinsic
properties the mechanism could introduce in actual applications. In the next chapter an implementa-
tion will be analyzed experimentally with small agent sets in order to prove that properties from the
theoretical analysis can be observed in practice.

5.1. Conceptual description
Section 4.3 explained that the architecture itself does not solve the incentive problem. It rather provides
the evidence on which an incentive mechanism can be built. Many different mechanism are possible,
depending on the specific needs of the application context. This offers a lot of flexibility for system
designers which is different from existing architectures which a very static in their protocol and have
pre-defined security and scalability properties.

5.1.1. Design choice: security vs scalability
Security, decentralization and scalability are three properties that are traded against each other in the
design of a decentralized system. It can be argued that TrustChain was designed with scalability as
the highest priority while Bitcoin was designed with security as highest priority property. We argue that
the extension that allows for internal agent state transparency allows for flexibility in the design choice
of security and scalability. In this section we propose a mechanism that trades some of the scalaiblity
of TrustChain for stronger security in order to show that a secure mechanism is possible on top of the
TrustChain architecture.

5.1.2. Concept: anti-entropy
The mechanism is based on the concept of anti-entropy, which was described in [7] for the purpose
of maintaining mutual consistency between multiple replicas of a database. Updates to the database
can arrive at any single site and need to be forwarded to all other replicas. Demers et. al. study three
different mechanisms to disseminate the updates to other sites: direct mail, anti-entropy and rumor
mongering.

In the direct mail mechanism, a database forwards the update to all other database immediately,
which seems like the most straight forward approach but is restricted by the fact that each database
does not know about all other databases.

Anti-entropy is a process in which each database periodically chooses a partner database and both
exchange all database contents in order to resolve any differences between the two. The process was
found to be reliable but slower than direct mail.
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The final mechanism is called RumorMongering. Sites consider updates “hot rumors” after receiving
them for the first time. While the site considers the rumor “hot”, it choses periodically another site and
informs it about the rumor. When the site has encountered a certain amount of sites which were already
aware of the “hot rumor”, that update is retained but site stops with actively propagating the update.

For the purpose of this work, we will focus on the concept of anti-entropy. Direct mail is not a viable
option because for large social networks the embedded social networks are a very small subset and
the rest of the agents in the network would not be informed of updates. Rumor mongering effects are
best observed in larger networks however this work is concerned with conceptual analysis and the
experimental analysis in the next section concerns small networks. Also there are more algorithms
than these three but anti-entropy fits the architecture of TrustChain very well and is a good starting
point for analyasis of dissemination mechanisms. The analysis of other mechanisms will be subject of
future work.

5.1.3. Replicated databases vs TrustChain
The context of the work of Demers et. al. is similar to the context that this work is concerned with
in many regards. Replicated databases are a distributed system as all instances of the database are
independent, equal entities, just like the agents in the TrustChain network. Each agent has an internal
state which is equal to the set of transactions that agent is aware of which is equal to the state of the
database which is equal to the entries that database is aware of. Our goal is to propagate information
on new transactions just like the goal of Demers et. al. was to propagate updates to the databases.

In the context of reputation systems anti-entropy allows for two agents to align on their knowledge
of the social network, that is to obtain the same embedded social network and agree on the reputation
of all agents in that network. Two agents, 𝑎። and 𝑎፣ have two different internal states, represented
by the sets of encounters 𝐸። and 𝐸፣. There can be some overlap between the two sets, but that is
not guaranteed. Agent 𝑎። chooses to synchronize states with agent 𝑎፣. Both agents send their own
set of known encounters and merge them. This results in a new set 𝐸።,፣ = 𝐸። ⋃𝐸፣. In the context of
TrustChain this translates to the exchange of transaction blocks, such that after the exchange both
agents have the exact same set of transaction blocks. As the reputation of peers is calculated from
the set of transactions both agents agree on a single reputation vector. If the two agents also use the
same function for trust calculation both can even agree on a single trust vecotr. The two agents have
reached consensus on trust and reputation.

The exchange of information will be recorded in the form of exchange blocks on the chain of both
participating agents as explained in the previous chapter, section 4.2.

The consensus is only reached at one point in time and is not maintained. Once any of the two
agents conducts another anti-entropy exchange or a transaction, the other agent is not required to be
informed or to observe the interaction. That is after the exchange both internal states can diverge until
the same two agents happen to perform another state synchronization.

In the work of Demers et. al. database instances chose partners for anti-entropy exchanges at
random which is a valid strategy as each peers updates seem equally important. In contrast, reputation
systems should value the information about possible future interaction partners as more important.
Therefore, our proposed mechanism requires agents to at least perform an anti-entropy exchange with
those agents that they will have an interaction next. That way, both parties of a transaction are required
to obtain and verify each others information in order to make sure that the transaction will be done on top
of a valid state. If any party does not agree with the state of the opposite party, the transaction will not
take place. If any party performs a transaction eventhough the information clearly showsmisconduct on
the part of the partner, they will also be held responsible for not performing their validation responsibility.
Without the requirement of validating transaction partners, agents can purposefully exchange data with
honest agents but perform interactions with dishonest agents and later claim to have had no knowledge
of the dishonesty of the partners.

5.2. Implementation of anti-entropy exchanges
In the previous section we described the anti-entropy method for information exchanges between
agents. This section elaborates on the implementation details of the mechanism in the TrustChain
architecture. We start with an application agnostic example of the exchange of information and the
transaction process.. In the next section we expand on the considerations for application specific im-
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plementations.
We consider an agent 𝑎።, who is about to conduct another interaction. What the interaction is about

and how the partner is chosen are specific to the application context. For this example we assume that
𝑎። can randomly choose an agent from the network. Once 𝑎። has chosen a partner 𝑎፣, 𝑎። starts the
communication and is therefore the initiator while 𝑎፣ is the responder.

The initiator starts the interaction by sending the chain and exchange history to the responder.
The chainIs this explained somewhere includes the blocks that describe the transaction and exchange
history Is this explained somewhere of the initiator while the exchange history includes the index of
blocks exchanged for each exchange block. On reception, the responder can verify the chain using the
algorithm 2. The algorithm first checks, wether the chain is a complete sequence without missing blocks
in between. If the check is positive, the number of exchange and transaction blocks is compared, as
well as the public keys of partners such that each transaction can be paired with a succesful exchange
previous to the transaction.

Algorithm 2 Chain
1: procedure verifyChain

Once that check also succeeds, the responder is able to build a block index that indexes the internal
state of an agent. The block index is a summary of the contents of the internal state and shows which
transactions of which agents are knwon to the agent. This is an optimization that allows agent to request
only specific blocks instead of the complete database of another agent. This is a lot faster if agents
that already share a lot of data. Agent 𝑎፣ compares the calculated block index with his own index and
request the difference in blocks, so those that 𝑎። has but 𝑎፣ does not have from 𝑎።.

The initiator receives the request and replies with the blocks that 𝑎፣ requires to perform the complete
internal state validation. Should the responder, for whatever reason, wrongly require more blocks, so
also blocks that are not in 𝑎። ’s posession, the interaction will be canceled.

The responder receives the missing blocks. At this point 𝑎፣ should be in the posession of all of 𝑎። ’s
blocks plus some blocks that 𝑎፣ has over 𝑎።. Agent 𝑎፣ is then able to perform the complete internal
state verification according to algorithm 3. A state is valid if:

Algorithm 3 Chain
1: procedure verifyChain

• the chain is valid as per algorithm 2

• the hashes of the blocks according the the exchange indexes match the hashes recorded on the
chain’s exchange blocks

• Any recorded misbehavior of other agents is reflected by those agents’ public keys in the ignore
and block list

If the internal state of 𝑎። is determined to be valid by 𝑎፣, the responder shows approval by sending
the own chain, exchange history and blocks (which can be calculted by taking the opposite difference
from before) to agent 𝑎።.

Once the initiator receives that data from the responder, the second validtion of chain and state, this
time agent 𝑎፣ as subject, can be conducted. If also this checks out, the valdiation phase is completed
and the initiator can publish an exchange block proposal, which includes the hashes of the exchanged
blocks. The responder receives that proposal and the hashes contained in the proposal block match
the hashes that 𝑎፣ calculates for the excahnged data, the block is signed and returned.

This concludes the anti-entropy exchange, after this the two agents perform a normal interaction.

5.3. Example
In order to make the mechanism clearer, an example is provided in this section. We look at two agents,
Alice and Bob. Alice wants to interact with Bob and starts the interaction. We assume that both agents
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are new to the network and only have their genesis blocks on the chain. In order to start the interaction,
Alice sends her chain (only the genesis block) and an empty set of exchanges to Bob. Obviously the
genesis block is accepted and Bob shows his approval by sending his own genesis block and an empty
set of exchanges. Also Alice accepts the data and creates an exchange block proposal. Figure 5.1
shows the chains of Alice and Bob after the complete interactions. The block proposal is Alice’s block
2. When Bob receives the block, he checks that the exchange hashes in the proposed exchange
block match the hashes of the two genesis blocks from Alice and himself. If he agrees, he documents
the acquisition of the exchange block in a single-signed exchange block (Bob’s block 2) and creates
the agreement block (Bob’s block 3) to the exchange block proposal. He sends back the exchange
block agreement to Alice, who herself creates a single-signed exchange block (Alice’s block 3) for the
acquisition of the exchange agreement block. At this point Alice is ready for the actual transaction.
How the transaction happens exactly is not of importance for this example. After the transaction was
successfully conducted it also needs to be documented. Again, the same process as with the exchange
is followed. Alice creates a transaction block proposal (Alice’s block 4), Bob creates the acquisition
block and the agreement block (Bob’s block 4 and 5). Finally, Alice creates the acquisition block of the
agreement block of the transaction.

This example sheds light on the block creation process but is too simple to properly explain the
exchange and verification process. We extend the example with another agent, Charles, whom Bob
would like to interact with after the previous interactions. Again, Charles is assumed to be new to the
network so the genesis block is the only block on his chain. Bob starts the interactions by sending his
chain and exchanges. Now Charlie performs some checks:

• Is the chain complete? - the chain is a full sequence (1 through 5) and Charlie is not aware of
any later blocks than 5, so the chain seems valid

• Are the exchanges correct? - there are three exchange blocks on the chain, one receiving the
exchange block proposal, one for the actual exchange of the genesis block of A and one for the
transaction block proposal. Charlie recalculates the hashes stored in the exchange blocks from
the blocks sent by Bob. If all the hashes are equal, the exchanges are accepted.

Once Charlie accepts all the checks, he sends his own chain and exchanges which are checked by
Bob and the interaction continues as previously described. Table 5.1 shows the blocks that each agent
has after the first and second round. After the second round, Charles has all the blocks from Bob that
he had after the first round.

Table 5.1: The block databases of each agent for the example

Database Alice Bob Charles

Before first round A: [1] B: [1] C: [1]
After first round A: [1, 2, 3, 4, 5]

B: [1, 3, 5]
A: [1, 2, 4]
B: [1, 2, 3, 4, 5]

C: [1]

After second round A: [1, 2, 3, 4, 5]
B: [1, 3, 5]

A: [1, 2, 4]
B: [1, 2, 3, 4, 5, 6, 7, 8, 9]
C: [1, 3, 5]

A: [1, 2, 4]
B: [1, 2, 3, 4, 5, 6, 8]
C: [1, 2, 3, 4, 5]

In order to make even clearer how the implementation works internally, Table 5.2 shows which
mappings of exchange blocks to exchanged blocks exist.

5.4. Consideration of application specific features
choosing partners – we now chose partners randomly but probably for many applications there are
better strategies application specific rules – we could perform additional verification for application
context, for example no downloading after a certain negative balance boundary

5.5. Advanced implications of anti-entropy
locality – when you need to exchange all information and storage has value, it is cheaper to interact with
agents that have a largely similar information set sybil attack – when we can apply application specific
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Figure 5.1: Example of one interaction between two agents
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Table 5.2: All exchange blocks with their corresponding exchanged blocks

Block Exchanged blocks

Alice Block 2 B: [1]
Alice Block 3 B: [3]
Alice Block 5 B: [5]
Bob Block 2 A: [2]
Bob Block 3 A: [1]
Bob Block 4 A: [4]
Bob Block 6 C: [1]
Bob Block 7 C: [3]
Bob Block 9 C: [5]
Charles Block 2 B: [6]
Charles Block 3 A: [1, 2, 4], B: [1, 2, 3, 4, 5]
Charles Block 4 B: [8]

rules and we require agents to perform checks of all agents they interact with, we can introduce a rule
that says agents cannot upload to agents that are completely new to the network (they first have to
prove themselves). This way an agent cannot create fake agents that all download from one agent and
thus increase that agents balance without actual downloading happening
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Experiments and results

Theory shows that internal agent state transparency and the anti-entropy mechanism reward honesty
and punish any strategic manipulation. We implemented this mechanism and establish in this chapter
how it handles strategic manipulation. More specifically we emulate honest agents and multiple types
of strategic manipulators in small scale experiments. We can observe the behavior of the honest
agents and find that strategic manipulators are detected and isolated. We show that honest agents
who execute our mechanism are able to effectively detect malicious agents that do not share or do not
verify their partners and ignore them for future interactions.

The rest of the chapter is structured as follows: we first give an overview of the software architec-
ture. Then we explain the setup of the experiments and the types of strategic manipulation that will be
emulated. Finally we present the results of the experiments.

6.1. Experiment design
The goal of the experiments is to prove the true effectiveness of the mechanism at detecting manip-
ulation attempts and isolating malicious agents. Three different types of dishonest behavior will be
analyzed in the experiments.

• Dissemination free-rider: An agent that gains an advantage by not expending resources on
disseminating transaction records.

• Verification free-rider: An agent that gains an advantage by not expending resources on veri-
fying the behavior of their peers

• Malicious: An agent that manipulates or withholds information in order to gain an advantage.

In the experiments we emulate small agent networks up to 6 agents. We assume that agents are
trying to perform interactions with each other. The experiments are not concerned with the actual
trust agents have in each other so we keep transaction blocks empty. Agents are acting completely
autonomously but knows about all the other agents in the network. At a frequency of 20 per second
agents go through rounds, in each round an agent has a 1% chance of starting an interaction. This
adds up to approximately 1 transaction every 5 seconds. In addition agents respond to interaction
requests from their peers asynchronously. At the start of the interaction a peer is selected with uniform
probability. If an interaction with the selected partner is already ongoing, the new interaction request is
cancelled without selecting a new partner. The same happens when the selected partner is a known
malicious agent. Once the interaction is started honest agents perform according the mechanism as
described in chapter 5. The other types of agents each have some deviation from the expected behavior
in order to obtain an unfair advantage. All types of agents which were used in the experiments are listed
in Table 6.1.

With these types of agent we run experiments with different sets of agents. In experiments with only
a single dishonest agent, the experiment is successful if the honest agents stay among themselves and
ignore the dishonest agent. That is, the dishonest agent should have 0 transactions at the end of the

29
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Table 6.1: Agent types used in the experiments

Type Sub-type Behavior

Dissemination
free-rider (DFR)

No exchanges Does not create any exchanges
Empty exchanges Creates exchanges blocks with empty exchanges
Self-requests Exchanges only own chain

Verification free-
rider

- Acts honestly but blindly trusts all partners without
verifying their data or behavior

Manipulator Hiding transaction Creates a normal transaction and tries to hide it af-
terwards

Forking Creates two conflicting transactions and shares
them with two different peers

experiment. In the case with multiple dishonest agents we have to make a distinction between multiple
single acting dishonest agents and collaborating groups of dishonest agents.

6.2. Implementation details
The experiments are run on a standalone implementation of TrustChain with the mentioned exten-
sion and mechanism. The code is available through GitHub1. The code is based on the TrustChain
implementation of py-ipv82 another project that is developed in the context of BlockchainLab.

The implementation is done in Python. The programming language was chosen as it allows for
fast development, offers many useful extensions and the py-ipv8 dependency is also written in Python.
At the core of the software is the agent module. It implements the agent base class which contains
all functionality for communicating with other agents. They communicate with each other using tcp
sockets, implemented using the zeromq library. Messages for the communication are defined in the
Google protobuf format. The basic TrustChain data structures and block database implementation
were taken from the py-ipv8 project. Next to the agents there is the discovery server which handles
the peer discovery process.

The experiment is started by spawning all agent processes and the discovery server. Once the
agent process is started each agent sends a registering message to the discovery server to register
the public key with the address of the tcp endpoint. After a 5 second initialization period it is assumed
that all processes have started and registered. The discovery server then sends a message to all
registered agents containing their peers. Once that messages is received agents start running the
experiment.

6.3. Experiment results
In the following we will present the results of our experimental analysis.

6.3.1. Dissemination free-riders
The first experiment to run is concerning the dissemination free-riders. One desired property of the
internal agent state transparency is that disseminating information is strategy-proof. That means, it
should not be advantageous to not share information. In this first set of experiments we observe the
behavior of three honest agents in the presence of three different types of dissemination free-riders.
Figure 6.1 shows the number of transactions of each agent against the time of the experiment.

All experiments show the same general picture: all honest agents steadily increase their succesful
interactions throughout the experiment and end up between 40 to 60 transactions. The dishonest
agents are not able to perform a single interaction. As expected the dissemination free-riders have no
chance to interact with the honest agents in any of the three cases. That means the honest agents
detect the wrong behavior of their malicious peers and ignore them for future interactions.

In the first experiment 6.1a the dishonest agent does not exchange any data and therefore does not
create any proof of exchanges. Yet in order to interact with honest agents the dissemination free-rider

1https://github.com/jangerritharms/aupair
2https://github.com/tribler/py-ipv8
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(a) Transactions over time of honest agents with dissemination free-rider that does not perform any exchanges

(b) Transactions over time of honest agents with dissemination free-rider that creates empty exchanges

(c) Transactions over time of honest agents with dissemination free-rider that only exchanges own data

Figure 6.1: Transactions over time of three experiments with different types of dissemination free-riders
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needs to publish a complete chain. Honest nodes detect the lack of exchange blocks upon inspection
and subsequently distrust that agent.

The second experiment 6.4b the dishonest agent aims to create empty exchanges. In the role of
the responder, the agent requests no blocks from the honest agents and as initiator the agent tries to
claim that no blocks were received from the honest agent. However, as explained in the theory section,
empty exchanges are not possible because agents always have at least one new block to talk about.
Also agents only sign an exchange block if they agree with the hash of transferred blocks. That is, if
the dishonest agent claims no blocks were sent but actually the honest agent did send data, the honest
agent will not sign the block. That way, also in this case the honest agents are able to detect the wrong
behavior.

Finally, the third type of dissemination free-riders, results shown in Figure6.1c , requests and sends
data about itself but not any other knowledge. When in the responder position, the agent can request
only its own blocks. As initiator the agent tries to act again as if no data was received other than its own
blocks. However the partner can see that the exchange block proposal does not properly represent the
data exchanged and will therefore stop the transaction. Also this way the agent is not able to interact
with honest partners.

We find that dissemination free-riding leads to isolation and no transaction with honest partners.
That means no reputation or trust will be build with this type of misbehaving agents and any hope for
future rewards is voided. Agents have to disseminate their data in order to be accepted and to prosper.

6.3.2. Collaborating dissemination free-riders
The situation changes when multiple dissemination free-riders join forces and collaborate in creating a
subnetwork. This situation can arise if a software is forked and an alternative release is published. In
order to analyze this situation we ran an experiment with three honest agents and three dissemination
free-riders. The transactions are plotted against time in Figure 6.3.

Figure 6.2: Transaction history of three honest agents and three dissemination free-riders that are cooperating

Again each line in the plot refers to the successful transactions of one agent. The plot shows six
lines going almost in parallel which means that all agents fare equally well. From the graph it is not
immediately obvious how this is possible as in the previous experiment, dissemination free-riders were
not able to get any successful transaction. Therefore an interaction matrix is shown in Figure 6.3 which
shows for each agent, how many interactions they had with each of their peers. The plot shows fields
with many interactions between the honest agents as well as for the dishonest agents among each
other. However the intersection of the two groups only shows blue fields and zero interactions.

The two plots together shows that dishonest agents can collaborate and prosper next to the honest
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Figure 6.3: Interaction matrix of three honest agents and three dissemination free-riders who are cooperating

agents but they will create an isolated subnetwork which is completely separated from the network of
the honest agents.

6.3.3. Malicious behavior
Next we look at two types of malicious behavior: forking and transaction hiding. Similar to the free-
riding, the combination of our anti-entropy mechanism and the internal agents state transparency
should isolate the malicious agents. The results of the experiments are presented in a similar format
as previously in Figure 6.4.

As expected the agents are not able to reach any significant amount of transactions. The transaction
hider is able to obtain one successful interaction, which is the one that is supposed to be hidden later
on. The agent is not able to hide any transactions because any future partner expects the complete
chain from that agent. Any missing blocks in the chain will be seen as a manipulation attempt.

The forking agents creates a fork with a chance of 25%. The expected number of transactions before
the fork happens is therefore 4. After the fork happens, the forking agent is detected by a partner once
the partner receives the two conflicting blocks. Depending on the peer selection which is random, this
can take some time. Therefore the forking agent is able to perform 9 interactions in the first 20 seconds
of the experiment. After those interactions the red line of the forking agent is horizontal, meaning no
more successful interactions happen.

6.3.4. Verification free-rider
In the previous experiment we showed that malicious agents can be detected and isolated. In chapter
WHERE EXACTLY we have presented the replay verification mechanism to show that not only mali-
cious agents, but also those agents that knowingly interact with those malicious agents can be isolated.
We first show how three honest agents act in the presence of one malicious agent and one verification
free-rider. It is expected that the malicious agent should properly be ignored by the honest agents, but
without replay verification, the verification free-rider interacts will all peers equally.

The results are presented in Figure 6.5. As expected, the verification free-rider, represented by the
blue dotted line in the figure is able to perform just as well as the honest agents. The forking agent is
mostly ignored. The interaction matrix in Figure 6.5b shows that most of the interaction of the forking
agent come from the verification free-rider who does not perform any checks and therefore does not
care about the fork.

Next we repeated the experiment, but this time the honest agents perform replay verification of their
partners before every interaction. The results are shown in Figure 6.6.
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(a) Transaction history of three honest agents interacting with one strategic manipulator who performs a fork

(b) Transactions over time of three honest agents with one strategic manipulator who tries to hide a transaction

Figure 6.4: Experiments of honest agents with sinlge malicious agents
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(a) Transaction history of three honest agents interacting with one strategic manipulator who performs a fork and
a verification free-rider

(b) Interaction matrix of three honest agents with one strategic manipulator who performs a fork and a verification
free-rider

Figure 6.5: Experiment with three honest agents without replay verification, one malicious agent and one verification free-rider

The results show that after a long initial phase in which the blue and red curve seem to follow the
green curves, they do get shallower after around 100seconds. It is quite obvious, at least from the
100 second mark onwards, that the blue and red curve are running excatly parallel. This is because
after detecting the forking agent and the verification free-rider, the honest agents are able to isolate the
dishonest agents and ignore them for future interactions. Also the interaction matrix shows that in the
end, both dishonest agents get few interaction with the honest agents.
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(a) Transaction history of three honest agents with replay verification interacting with one strategic manipulator
who performs a fork and a verification free-rider

(b) Interaction matrix of three honest agents with replay verification with one strategic manipulator who performs
a fork and a verification free-rider

Figure 6.6: Experiment with three honest agents without replay verification, one malicious agent and one verification free-rider



7
Discussion

In this work we presented a strategy-proof mechanism for information dissemination. Applied to our
distributed blockchain based trust system we are able to effectively defend against dissemination and
verification free-riders. It creates an incentive for each agent on the network to help defend the network
against any lazy or malicious behavior. It thereby is a major step towards a secure, distributed and
scalable trust system.

* we defined a new blockchain system based on TrustChain which provides internal agent state
transparency/gossip transparency * we formally proof that the architecture provides a complete view
of the internal state of the agent * we defined a specific mechanism that makes use of the archiecture
* we experimentally proof that honest agents are able to eventually identify free-riders and malicious
agents

7.1. Future research
7.1.1. Further developing this mechanism
* incremental * research scalability properties for this mechanism * locality by interacting with those
that have similar information * sybil attack resistance by checking that new agents paid their dues

7.1.2. Next steps for the trust system
* locality with ping *
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