import utils.fflow as flw import torch def main(): # read options option = flw.read_option() # set random seed flw.setup_seed(option['seed']) # initialize server, clients and fedtask server = flw.initialize(option) # start federated optimization try: server.run() except: # log the exception that happens during training-time flw.logger.exception("Exception Logged") raise RuntimeError if __name__ == '__main__': torch.multiprocessing.set_start_method('spawn') torch.multiprocessing.set_sharing_strategy('file_system') main()