-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_computed_diagnostics.py
181 lines (129 loc) · 5.19 KB
/
test_computed_diagnostics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os
import fsspec
import numpy as np
import pandas as pd
import pytest
import xarray
from fv3net.diagnostics.prognostic_run.computed_diagnostics import (
ComputedDiagnosticsList,
_parse_metadata,
detect_folders,
RunDiagnostics,
RunMetrics,
DiagnosticFolder,
)
def test__parse_metadata():
run = "blah-blah-baseline"
out = _parse_metadata(run)
assert out == {"run": run, "baseline": True}
def test_detect_folders(tmpdir):
fs = fsspec.filesystem("file")
rundirs = ["rundir1", "rundir2"]
for rdir in rundirs:
tmpdir.mkdir(rdir).join("diags.nc").write("foobar")
tmpdir.mkdir("not_a_rundir").join("useless_file.txt").write("useless!")
result = detect_folders(tmpdir, fs)
assert len(result) == 2
for found_dir in result:
assert found_dir in rundirs
assert isinstance(result[found_dir], DiagnosticFolder)
def test_ComputedDiagnosticsList_from_urls():
rundirs = ["rundir1", "rundir2"]
result = ComputedDiagnosticsList.from_urls(rundirs)
assert len(result.folders) == 2
assert isinstance(result.folders["0"], DiagnosticFolder)
assert isinstance(result.folders["1"], DiagnosticFolder)
def test_get_movie_links(tmpdir):
domain = "http://www.domain.com"
rdirs = ["rundir1", "rundir2"]
for rdir in rdirs:
rundir = tmpdir.mkdir(rdir)
rundir.join("movie1.mp4").write("foobar")
rundir.join("diags.nc").write("foobar")
rundir.join("metrics.json").write("foobar")
tmpdir.join(rdirs[0]).join("movie2.mp4").write("foobar")
result = ComputedDiagnosticsList.from_directory(str(tmpdir)).find_movie_links()
assert "movie1.mp4" in result
assert "movie2.mp4" in result
assert {(os.path.join(domain, tmpdir, "rundir1", "movie2.mp4"), "rundir1")} == set(
result["movie2.mp4"]
)
one_run = xarray.Dataset({"a": ([], 1,), "b": ([], 2)}, attrs=dict(run="one-run"))
@pytest.mark.parametrize("varname", ["a", "b"])
@pytest.mark.parametrize("run", ["one-run", "another-run"])
def test_RunDiagnostics_get_variable(run, varname):
another_run = one_run.assign_attrs(run="another-run")
arr = RunDiagnostics([one_run, another_run]).get_variable(run, varname)
xarray.testing.assert_equal(arr, one_run[varname])
def test_RunDiagnostics_get_variable_missing_variable():
another_run = one_run.assign_attrs(run="another-run").drop("a")
run = "another-run"
varname = "a"
arr = RunDiagnostics([one_run, another_run]).get_variable(run, varname)
xarray.testing.assert_equal(arr, xarray.full_like(one_run[varname], np.nan))
def test_RunDiagnostics_runs():
runs = ["a", "b", "c"]
diagnostics = RunDiagnostics([one_run.assign_attrs(run=run) for run in runs])
assert diagnostics.runs == runs
def test_RunDiagnostics_list_variables():
ds = xarray.Dataset({})
diagnostics = RunDiagnostics(
[
ds.assign(a=1, b=1).assign_attrs(run="1"),
ds.assign(b=1).assign_attrs(run="2"),
ds.assign(c=1).assign_attrs(run="3"),
]
)
assert diagnostics.variables == {"a", "b", "c"}
metrics_df = pd.DataFrame(
{
"run": ["run1", "run1", "run2", "run2"],
"baseline": [False, False, True, True],
"metric": [
"rmse_of_time_mean/precip",
"rmse_of_time_mean/h500",
"rmse_of_time_mean/precip",
"time_and_global_mean_bias/precip",
],
"value": [-1, 2, 1, 0],
"units": ["mm/day", "m", "mm/day", "mm/day"],
}
)
def test_RunMetrics_runs():
metrics = RunMetrics(metrics_df)
assert metrics.runs == ["run1", "run2"]
def test_RunMetrics_types():
metrics = RunMetrics(metrics_df)
assert metrics.types == {"rmse_of_time_mean", "time_and_global_mean_bias"}
def test_RunMetrics_get_metric_variables():
metrics = RunMetrics(metrics_df)
assert metrics.get_metric_variables("rmse_of_time_mean") == {"precip", "h500"}
def test_RunMetrics_get_metric_value():
metrics = RunMetrics(metrics_df)
assert metrics.get_metric_value("rmse_of_time_mean", "precip", "run1") == -1
def test_RunMetrics_get_metric_value_missing():
metrics = RunMetrics(metrics_df)
assert np.isnan(metrics.get_metric_value("rmse_of_time_mean", "h500", "run2"))
def test_RunMetrics_get_metric_units():
metrics = RunMetrics(metrics_df)
assert metrics.get_metric_units("rmse_of_time_mean", "precip", "run1") == "mm/day"
@pytest.fixture()
def url():
# this data might get out of date if it does we should replace it with synth
# data
return "gs://vcm-ml-public/argo/2021-05-05-compare-n2o-resolution-a8290d64ce4f/"
@pytest.mark.network
def test_ComputeDiagnosticsList_load_diagnostics(url):
diags = ComputedDiagnosticsList.from_directory(url)
meta, diags = diags.load_diagnostics()
assert isinstance(diags, RunDiagnostics)
@pytest.mark.network
def test_ComputeDiagnosticsList_load_metrics(url):
diags = ComputedDiagnosticsList.from_directory(url)
meta = diags.load_metrics()
assert isinstance(meta, RunMetrics)
@pytest.mark.network
def test_ComputeDiagnosticsList_find_movie_links(url):
diags = ComputedDiagnosticsList.from_directory(url)
meta = diags.find_movie_links()
assert len(meta) == 0