-
Notifications
You must be signed in to change notification settings - Fork 350
/
Copy pathearly_stopping.py
551 lines (466 loc) · 21.6 KB
/
early_stopping.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities for early stopping."""
import collections
import operator
import os
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import state_ops
from tensorflow.python.ops import variable_scope
from tensorflow.python.platform import gfile
from tensorflow.python.platform import tf_logging
from tensorflow.python.summary import summary_iterator
from tensorflow.python.training import basic_session_run_hooks
from tensorflow.python.training import session_run_hook
from tensorflow.python.training import training_util
from tensorflow.python.util.tf_export import estimator_export
from easy_rec.python.utils.load_class import load_by_path
_EVENT_FILE_GLOB_PATTERN = 'events.out.tfevents.*'
EARLY_STOP_SIG_SCOPE = 'signal_early_stopping'
EARLY_STOP_SIG_NAME = 'STOP'
def find_early_stop_var(var_list):
pattern = EARLY_STOP_SIG_SCOPE + '/' + EARLY_STOP_SIG_NAME
for var in var_list:
if pattern in var.name:
return var
return None
@estimator_export('estimator.experimental.make_early_stopping_hook')
def make_early_stopping_hook(estimator,
should_stop_fn,
run_every_secs=60,
run_every_steps=None):
"""Creates early-stopping hook.
Returns a `SessionRunHook` that stops training when `should_stop_fn` returns `True`. Usage example:
```python
estimator = ...
hook = early_stopping.make_early_stopping_hook(
estimator, should_stop_fn=make_stop_fn(...))
train_spec = tf.estimator.TrainSpec(..., hooks=[hook])
tf.estimator.train_and_evaluate(estimator, train_spec, ...)
```
Caveat: Current implementation supports early-stopping both training and
evaluation in local mode. In distributed mode, training can be stopped but
evaluation (where it's a separate job) will indefinitely wait for new model
checkpoints to evaluate, so you will need other means to detect and stop it.
Early-stopping evaluation in distributed mode requires changes in
`train_and_evaluate` API and will be addressed in a future revision.
Args:
estimator: A `tf.estimator.Estimator` instance.
should_stop_fn: `callable`, function that takes no arguments and returns a
`bool`. If the function returns `True`, stopping will be initiated by the
chief.
run_every_secs: If specified, calls `should_stop_fn` at an interval of
`run_every_secs` seconds. Defaults to 60 seconds. Either this or
`run_every_steps` must be set.
run_every_steps: If specified, calls `should_stop_fn` every
`run_every_steps` steps. Either this or `run_every_secs` must be set.
Returns:
A `SessionRunHook` that periodically executes `should_stop_fn` and initiates
early stopping if the function returns `True`.
Raises:
TypeError: If `estimator` is not of type `tf.estimator.Estimator`.
ValueError: If both `run_every_secs` and `run_every_steps` are set.
"""
if run_every_secs is not None and run_every_steps is not None:
raise ValueError('Only one of `run_every_secs` and `run_every_steps` must '
'be set.')
if estimator.config.is_chief:
return _StopOnPredicateHook(should_stop_fn, run_every_secs, run_every_steps)
else:
return _CheckForStoppingHook()
@estimator_export('estimator.experimental.stop_if_higher_hook')
def stop_if_higher_hook(estimator,
metric_name,
threshold,
eval_dir=None,
min_steps=0,
run_every_secs=60,
run_every_steps=None):
"""Creates hook to stop if the given metric is higher than the threshold.
Usage example:
```python
estimator = ...
# Hook to stop training if accuracy becomes higher than 0.9.
hook = early_stopping.stop_if_higher_hook(estimator, "accuracy", 0.9)
train_spec = tf.estimator.TrainSpec(..., hooks=[hook])
tf.estimator.train_and_evaluate(estimator, train_spec, ...)
```
Caveat: Current implementation supports early-stopping both training and
evaluation in local mode. In distributed mode, training can be stopped but
evaluation (where it's a separate job) will indefinitely wait for new model
checkpoints to evaluate, so you will need other means to detect and stop it.
Early-stopping evaluation in distributed mode requires changes in
`train_and_evaluate` API and will be addressed in a future revision.
Args:
estimator: A `tf.estimator.Estimator` instance.
metric_name: `str`, metric to track. "loss", "accuracy", etc.
threshold: Numeric threshold for the given metric.
eval_dir: If set, directory containing summary files with eval metrics. By
default, `estimator.eval_dir()` will be used.
min_steps: `int`, stop is never requested if global step is less than this
value. Defaults to 0.
run_every_secs: If specified, calls `should_stop_fn` at an interval of
`run_every_secs` seconds. Defaults to 60 seconds. Either this or
`run_every_steps` must be set.
run_every_steps: If specified, calls `should_stop_fn` every
`run_every_steps` steps. Either this or `run_every_secs` must be set.
Returns:
An early-stopping hook of type `SessionRunHook` that periodically checks
if the given metric is higher than specified threshold and initiates
early stopping if true.
"""
return _stop_if_threshold_crossed_hook(
estimator=estimator,
metric_name=metric_name,
threshold=threshold,
higher_is_better=True,
eval_dir=eval_dir,
min_steps=min_steps,
run_every_secs=run_every_secs,
run_every_steps=run_every_steps)
@estimator_export('estimator.experimental.stop_if_lower_hook')
def stop_if_lower_hook(estimator,
metric_name,
threshold,
eval_dir=None,
min_steps=0,
run_every_secs=60,
run_every_steps=None):
"""Creates hook to stop if the given metric is lower than the threshold.
Usage example:
```python
estimator = ...
# Hook to stop training if loss becomes lower than 100.
hook = early_stopping.stop_if_lower_hook(estimator, "loss", 100)
train_spec = tf.estimator.TrainSpec(..., hooks=[hook])
tf.estimator.train_and_evaluate(estimator, train_spec, ...)
```
Caveat: Current implementation supports early-stopping both training and
evaluation in local mode. In distributed mode, training can be stopped but
evaluation (where it's a separate job) will indefinitely wait for new model
checkpoints to evaluate, so you will need other means to detect and stop it.
Early-stopping evaluation in distributed mode requires changes in
`train_and_evaluate` API and will be addressed in a future revision.
Args:
estimator: A `tf.estimator.Estimator` instance.
metric_name: `str`, metric to track. "loss", "accuracy", etc.
threshold: Numeric threshold for the given metric.
eval_dir: If set, directory containing summary files with eval metrics. By
default, `estimator.eval_dir()` will be used.
min_steps: `int`, stop is never requested if global step is less than this
value. Defaults to 0.
run_every_secs: If specified, calls `should_stop_fn` at an interval of
`run_every_secs` seconds. Defaults to 60 seconds. Either this or
`run_every_steps` must be set.
run_every_steps: If specified, calls `should_stop_fn` every
`run_every_steps` steps. Either this or `run_every_secs` must be set.
Returns:
An early-stopping hook of type `SessionRunHook` that periodically checks
if the given metric is lower than specified threshold and initiates
early stopping if true.
"""
return _stop_if_threshold_crossed_hook(
estimator=estimator,
metric_name=metric_name,
threshold=threshold,
higher_is_better=False,
eval_dir=eval_dir,
min_steps=min_steps,
run_every_secs=run_every_secs,
run_every_steps=run_every_steps)
@estimator_export('estimator.experimental.stop_if_no_increase_hook')
def stop_if_no_increase_hook(estimator,
metric_name,
max_steps_without_increase,
eval_dir=None,
min_steps=0,
run_every_secs=60,
run_every_steps=None):
"""Creates hook to stop if metric does not increase within given max steps.
Usage example:
```python
estimator = ...
# Hook to stop training if accuracy does not increase in over 100000 steps.
hook = early_stopping.stop_if_no_increase_hook(estimator, "accuracy", 100000)
train_spec = tf.estimator.TrainSpec(..., hooks=[hook])
tf.estimator.train_and_evaluate(estimator, train_spec, ...)
```
Caveat: Current implementation supports early-stopping both training and
evaluation in local mode. In distributed mode, training can be stopped but
evaluation (where it's a separate job) will indefinitely wait for new model
checkpoints to evaluate, so you will need other means to detect and stop it.
Early-stopping evaluation in distributed mode requires changes in
`train_and_evaluate` API and will be addressed in a future revision.
Args:
estimator: A `tf.estimator.Estimator` instance.
metric_name: `str`, metric to track. "loss", "accuracy", etc.
max_steps_without_increase: `int`, maximum number of training steps with no
increase in the given metric.
eval_dir: If set, directory containing summary files with eval metrics. By
default, `estimator.eval_dir()` will be used.
min_steps: `int`, stop is never requested if global step is less than this
value. Defaults to 0.
run_every_secs: If specified, calls `should_stop_fn` at an interval of
`run_every_secs` seconds. Defaults to 60 seconds. Either this or
`run_every_steps` must be set.
run_every_steps: If specified, calls `should_stop_fn` every
`run_every_steps` steps. Either this or `run_every_secs` must be set.
Returns:
An early-stopping hook of type `SessionRunHook` that periodically checks
if the given metric shows no increase over given maximum number of
training steps, and initiates early stopping if true.
"""
return _stop_if_no_metric_improvement_hook(
estimator=estimator,
metric_name=metric_name,
max_steps_without_improvement=max_steps_without_increase,
higher_is_better=True,
eval_dir=eval_dir,
min_steps=min_steps,
run_every_secs=run_every_secs,
run_every_steps=run_every_steps)
def custom_early_stop_hook(estimator,
eval_dir,
custom_stop_func,
custom_stop_func_params,
run_every_secs=60,
run_every_steps=None):
"""Custom early stop hook for complex early stop conditions.
Args:
estimator: A `tf.estimator.Estimator` instance.
eval_dir: If set, directory containing summary files with eval metrics. By
default, `estimator.eval_dir()` will be used.
custom_stop_func: custom stop function, accept two parameters: eval_results,
custom_stop_func_params
custom_stop_func_params: string, parameters to custom_stop_func
run_every_secs: If specified, calls `should_stop_fn` at an interval of
`run_every_secs` seconds. Defaults to 60 seconds. Either this or
`run_every_steps` must be set.
run_every_steps: If specified, calls `should_stop_fn` every
`run_every_steps` steps. Either this or `run_every_secs` must be set.
Returns:
An early-stopping hook of type `SessionRunHook` that stop training and
evaluation under user defined conditions.
"""
if eval_dir is None:
eval_dir = estimator.eval_dir()
if isinstance(custom_stop_func, str) or isinstance(custom_stop_func,
type(u'')):
custom_stop_func = load_by_path(custom_stop_func)
def _custom_stop_fn():
eval_results = read_eval_metrics(eval_dir)
return custom_stop_func(eval_results, custom_stop_func_params)
return make_early_stopping_hook(
estimator=estimator,
should_stop_fn=_custom_stop_fn,
run_every_secs=run_every_secs,
run_every_steps=run_every_steps)
@estimator_export('estimator.experimental.stop_if_no_decrease_hook')
def stop_if_no_decrease_hook(estimator,
metric_name,
max_steps_without_decrease,
eval_dir=None,
min_steps=0,
run_every_secs=60,
run_every_steps=None):
"""Creates hook to stop if metric does not decrease within given max steps.
Usage example:
```python
estimator = ...
# Hook to stop training if loss does not decrease in over 100000 steps.
hook = early_stopping.stop_if_no_decrease_hook(estimator, "loss", 100000)
train_spec = tf.estimator.TrainSpec(..., hooks=[hook])
tf.estimator.train_and_evaluate(estimator, train_spec, ...)
```
Caveat: Current implementation supports early-stopping both training and
evaluation in local mode. In distributed mode, training can be stopped but
evaluation (where it's a separate job) will indefinitely wait for new model
checkpoints to evaluate, so you will need other means to detect and stop it.
Early-stopping evaluation in distributed mode requires changes in
`train_and_evaluate` API and will be addressed in a future revision.
Args:
estimator: A `tf.estimator.Estimator` instance.
metric_name: `str`, metric to track. "loss", "accuracy", etc.
max_steps_without_decrease: `int`, maximum number of training steps with no
decrease in the given metric.
eval_dir: If set, directory containing summary files with eval metrics. By
default, `estimator.eval_dir()` will be used.
min_steps: `int`, stop is never requested if global step is less than this
value. Defaults to 0.
run_every_secs: If specified, calls `should_stop_fn` at an interval of
`run_every_secs` seconds. Defaults to 60 seconds. Either this or
`run_every_steps` must be set.
run_every_steps: If specified, calls `should_stop_fn` every
`run_every_steps` steps. Either this or `run_every_secs` must be set.
Returns:
An early-stopping hook of type `SessionRunHook` that periodically checks
if the given metric shows no decrease over given maximum number of
training steps, and initiates early stopping if true.
"""
return _stop_if_no_metric_improvement_hook(
estimator=estimator,
metric_name=metric_name,
max_steps_without_improvement=max_steps_without_decrease,
higher_is_better=False,
eval_dir=eval_dir,
min_steps=min_steps,
run_every_secs=run_every_secs,
run_every_steps=run_every_steps)
def read_eval_metrics(eval_dir):
"""Helper to read eval metrics from eval summary files.
Args:
eval_dir: Directory containing summary files with eval metrics.
Returns:
A `dict` with global steps mapping to `dict` of metric names and values.
"""
eval_metrics_dict = collections.defaultdict(dict)
for event in _summaries(eval_dir):
if not event.HasField('summary'):
continue
metrics = {}
for value in event.summary.value:
if value.HasField('simple_value'):
metrics[value.tag] = value.simple_value
if metrics:
eval_metrics_dict[event.step].update(metrics)
return collections.OrderedDict(
sorted(eval_metrics_dict.items(), key=lambda t: t[0]))
def _stop_if_threshold_crossed_hook(estimator, metric_name, threshold,
higher_is_better, eval_dir, min_steps,
run_every_secs, run_every_steps):
"""Creates early-stopping hook to stop training if threshold is crossed."""
if eval_dir is None:
eval_dir = estimator.eval_dir()
is_lhs_better = operator.gt if higher_is_better else operator.lt
greater_or_lesser = 'greater than' if higher_is_better else 'less than'
def stop_if_threshold_crossed_fn():
"""Returns `True` if the given metric crosses specified threshold."""
eval_results = read_eval_metrics(eval_dir)
for step, metrics in eval_results.items():
if step < min_steps:
continue
val = metrics[metric_name]
if is_lhs_better(val, threshold):
tf_logging.info(
'At step %s, metric "%s" has value %s which is %s the configured '
'threshold (%s) for early stopping.', step, metric_name, val,
greater_or_lesser, threshold)
return True
return False
return make_early_stopping_hook(
estimator=estimator,
should_stop_fn=stop_if_threshold_crossed_fn,
run_every_secs=run_every_secs,
run_every_steps=run_every_steps)
def _stop_if_no_metric_improvement_hook(estimator, metric_name,
max_steps_without_improvement,
higher_is_better, eval_dir, min_steps,
run_every_secs, run_every_steps):
"""Returns hook to stop training if given metric shows no improvement."""
if eval_dir is None:
eval_dir = estimator.eval_dir()
is_lhs_better = operator.gt if higher_is_better else operator.lt
increase_or_decrease = 'increase' if higher_is_better else 'decrease'
def stop_if_no_metric_improvement_fn():
"""Returns `True` if metric does not improve within max steps."""
eval_results = read_eval_metrics(eval_dir)
best_val = None
best_val_step = None
for step, metrics in eval_results.items():
if step < min_steps:
continue
val = metrics[metric_name]
if best_val is None or is_lhs_better(val, best_val):
best_val = val
best_val_step = step
if step - best_val_step >= max_steps_without_improvement:
tf_logging.info(
'No %s in metric "%s" for %s steps, which is greater than or equal '
'to max steps (%s) configured for early stopping.',
increase_or_decrease, metric_name, step - best_val_step,
max_steps_without_improvement)
return True
return False
return make_early_stopping_hook(
estimator=estimator,
should_stop_fn=stop_if_no_metric_improvement_fn,
run_every_secs=run_every_secs,
run_every_steps=run_every_steps)
def _summaries(eval_dir):
"""Yields `tensorflow.Event` protos from event files in the eval dir.
Args:
eval_dir: Directory containing summary files with eval metrics.
Yields:
`tensorflow.Event` object read from the event files.
"""
if gfile.Exists(eval_dir):
for event_file in gfile.Glob(
os.path.join(eval_dir, _EVENT_FILE_GLOB_PATTERN)):
for event in summary_iterator.summary_iterator(event_file):
yield event
def _get_or_create_stop_var():
with variable_scope.variable_scope(
name_or_scope=EARLY_STOP_SIG_SCOPE,
values=[],
reuse=variable_scope.AUTO_REUSE):
return variable_scope.get_variable(
name=EARLY_STOP_SIG_NAME,
shape=[],
dtype=dtypes.bool,
initializer=init_ops.constant_initializer(False),
collections=[ops.GraphKeys.GLOBAL_VARIABLES],
trainable=False)
class _StopOnPredicateHook(session_run_hook.SessionRunHook):
"""Hook that requests stop when `should_stop_fn` returns `True`."""
def __init__(self, should_stop_fn, run_every_secs=60, run_every_steps=None):
if not callable(should_stop_fn):
raise TypeError('`should_stop_fn` must be callable.')
self._should_stop_fn = should_stop_fn
self._timer = basic_session_run_hooks.SecondOrStepTimer(
every_secs=run_every_secs, every_steps=run_every_steps)
self._global_step_tensor = None
self._stop_var = _get_or_create_stop_var()
self._stop_op = None
def begin(self):
self._global_step_tensor = training_util.get_global_step()
self._stop_op = state_ops.assign(self._stop_var, True)
def before_run(self, run_context):
del run_context
return session_run_hook.SessionRunArgs(self._global_step_tensor)
def after_run(self, run_context, run_values):
global_step = run_values.results
if self._timer.should_trigger_for_step(global_step):
self._timer.update_last_triggered_step(global_step)
if self._should_stop_fn():
tf_logging.info('Requesting early stopping at global step %d',
global_step)
run_context.session.run(self._stop_op)
run_context.request_stop()
class _CheckForStoppingHook(session_run_hook.SessionRunHook):
"""Hook that requests stop if stop is requested by `_StopOnPredicateHook`."""
def __init__(self):
self._stop_var = None
def begin(self):
self._stop_var = _get_or_create_stop_var()
def before_run(self, run_context):
del run_context
return session_run_hook.SessionRunArgs(self._stop_var)
def after_run(self, run_context, run_values):
should_early_stop = run_values.results
if should_early_stop:
tf_logging.info('Early stopping requested, suspending run.')
run_context.request_stop()