-
Notifications
You must be signed in to change notification settings - Fork 350
/
Copy pathfeature_column.py
3255 lines (2738 loc) · 123 KB
/
feature_column.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- encoding:utf-8 -*-
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""This API defines FeatureColumn abstraction.
FeatureColumns provide a high level abstraction for ingesting and representing
features. FeatureColumns are also the primary way of encoding features for
canned `tf.estimator.Estimator`s.
When using FeatureColumns with `Estimators`, the type of feature column you
should choose depends on (1) the feature type and (2) the model type.
1. Feature type:
* Continuous features can be represented by `numeric_column`.
* Categorical features can be represented by any `categorical_column_with_*`
column:
- `categorical_column_with_vocabulary_list`
- `categorical_column_with_vocabulary_file`
- `categorical_column_with_hash_bucket`
- `categorical_column_with_identity`
- `weighted_categorical_column`
2. Model type:
* Deep neural network models (`DNNClassifier`, `DNNRegressor`).
Continuous features can be directly fed into deep neural network models.
age_column = numeric_column("age")
To feed sparse features into DNN models, wrap the column with
`embedding_column` or `indicator_column`. `indicator_column` is recommended
for features with only a few possible values. For features with many
possible values, to reduce the size of your model, `embedding_column` is
recommended.
embedded_dept_column = embedding_column(
categorical_column_with_vocabulary_list(
"department", ["math", "philosophy", ...]), dimension=10)
* Wide (aka linear) models (`LinearClassifier`, `LinearRegressor`).
Sparse features can be fed directly into linear models. They behave like an
indicator column but with an efficient implementation.
dept_column = categorical_column_with_vocabulary_list("department",
["math", "philosophy", "english"])
It is recommended that continuous features be bucketized before being
fed into linear models.
bucketized_age_column = bucketized_column(
source_column=age_column,
boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65])
Sparse features can be crossed (also known as conjuncted or combined) in
order to form non-linearities, and then fed into linear models.
cross_dept_age_column = crossed_column(
columns=["department", bucketized_age_column],
hash_bucket_size=1000)
Example of building canned `Estimator`s using FeatureColumns:
```python
# Define features and transformations
deep_feature_columns = [age_column, embedded_dept_column]
wide_feature_columns = [dept_column, bucketized_age_column,
cross_dept_age_column]
# Build deep model
estimator = DNNClassifier(
feature_columns=deep_feature_columns,
hidden_units=[500, 250, 50])
estimator.train(...)
# Or build a wide model
estimator = LinearClassifier(
feature_columns=wide_feature_columns)
estimator.train(...)
# Or build a wide and deep model!
estimator = DNNLinearCombinedClassifier(
linear_feature_columns=wide_feature_columns,
dnn_feature_columns=deep_feature_columns,
dnn_hidden_units=[500, 250, 50])
estimator.train(...)
```
FeatureColumns can also be transformed into a generic input layer for
custom models using `input_layer`.
Example of building model using FeatureColumns, this can be used in a
`model_fn` which is given to the {tf.estimator.Estimator}:
```python
# Building model via layers
deep_feature_columns = [age_column, embedded_dept_column]
columns_to_tensor = parse_feature_columns_from_examples(
serialized=my_data,
feature_columns=deep_feature_columns)
first_layer = input_layer(
features=columns_to_tensor,
feature_columns=deep_feature_columns)
second_layer = fully_connected(first_layer, ...)
```
NOTE: Functions prefixed with "_" indicate experimental or private parts of
the API subject to change, and should not be relied upon!
NOTE: The new feature columns are being developed in feature_column_v2.py and
are a somewhat duplicate of the code here. Please make sure to update logic
in both places.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import abc
import collections
import math
import numpy as np
import six
from tensorflow.python.eager import context
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import sparse_tensor as sparse_tensor_lib
from tensorflow.python.framework import tensor_shape
from tensorflow.python.keras.engine import training
from tensorflow.python.layers import base
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import check_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import embedding_ops
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import lookup_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops import parsing_ops
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.ops import sparse_ops
from tensorflow.python.ops import string_ops
from tensorflow.python.ops import template
from tensorflow.python.ops import variable_scope
from tensorflow.python.ops import variables
from tensorflow.python.platform import gfile
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.training import checkpoint_utils
from tensorflow.python.util import nest
from easy_rec.python.compat import embedding_ops as ev_embedding_ops
from easy_rec.python.compat.feature_column import utils as fc_utils
def _internal_input_layer(features,
feature_columns,
weight_collections=None,
trainable=True,
cols_to_vars=None,
scope=None,
cols_to_output_tensors=None,
from_template=False,
feature_name_to_output_tensors=None):
"""See input_layer, `scope` is a name or variable scope to use."""
feature_columns = _normalize_feature_columns(feature_columns)
for column in feature_columns:
if not isinstance(column, _DenseColumn):
raise ValueError(
'Items of feature_columns must be a _DenseColumn. '
'You can wrap a categorical column with an '
'embedding_column or indicator_column. Given: {}'.format(column))
weight_collections = list(weight_collections or [])
if ops.GraphKeys.GLOBAL_VARIABLES not in weight_collections:
weight_collections.append(ops.GraphKeys.GLOBAL_VARIABLES)
if ops.GraphKeys.MODEL_VARIABLES not in weight_collections:
weight_collections.append(ops.GraphKeys.MODEL_VARIABLES)
def _get_logits(): # pylint: disable=missing-docstring
builder = _LazyBuilder(features)
output_tensors = []
ordered_columns = []
for column in sorted(feature_columns, key=lambda x: x.name):
ordered_columns.append(column)
with variable_scope.variable_scope(
None, default_name=column._var_scope_name): # pylint: disable=protected-access
tensor = column._get_dense_tensor( # pylint: disable=protected-access
builder,
weight_collections=weight_collections,
trainable=trainable)
num_elements = column._variable_shape.num_elements() # pylint: disable=protected-access
batch_size = array_ops.shape(tensor)[0]
output_tensor = array_ops.reshape(
tensor, shape=(batch_size, num_elements))
output_tensors.append(output_tensor)
if cols_to_vars is not None:
# Retrieve any variables created (some _DenseColumn's don't create
# variables, in which case an empty list is returned).
cols_to_vars[column] = ops.get_collection(
ops.GraphKeys.GLOBAL_VARIABLES,
scope=variable_scope.get_variable_scope().name)
if cols_to_output_tensors is not None:
cols_to_output_tensors[column] = output_tensor
if feature_name_to_output_tensors is not None and column.raw_name in feature_name_to_output_tensors:
feature_name_to_output_tensors[column.raw_name] = output_tensor
_verify_static_batch_size_equality(output_tensors, ordered_columns)
return array_ops.concat(output_tensors, 1)
# If we're constructing from the `make_template`, that by default adds a
# variable scope with the name of the layer. In that case, we dont want to
# add another `variable_scope` as that would break checkpoints.
if from_template:
return _get_logits()
else:
reuse = None if scope is None else variable_scope.AUTO_REUSE
with variable_scope.variable_scope(
scope,
default_name='input_layer',
values=features.values(),
reuse=reuse):
return _get_logits()
def input_layer(features,
feature_columns,
weight_collections=None,
trainable=True,
cols_to_vars=None,
cols_to_output_tensors=None,
feature_name_to_output_tensors=None,
scope=None):
"""Returns a dense `Tensor` as input layer based on given `feature_columns`.
Generally a single example in training data is described with FeatureColumns.
At the first layer of the model, this column oriented data should be converted
to a single `Tensor`.
Example:
```python
price = numeric_column('price')
keywords_embedded = embedding_column(
categorical_column_with_hash_bucket("keywords", 10K), dimensions=16)
columns = [price, keywords_embedded, ...]
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
dense_tensor = input_layer(features, columns)
for units in [128, 64, 32]:
dense_tensor = tf.compat.v1.layers.dense(dense_tensor, units, tf.nn.relu)
prediction = tf.compat.v1.layers.dense(dense_tensor, 1)
```
Args:
features: A mapping from key to tensors. `_FeatureColumn`s look up via these
keys. For example `numeric_column('price')` will look at 'price' key in
this dict. Values can be a `SparseTensor` or a `Tensor` depends on
corresponding `_FeatureColumn`.
feature_columns: An iterable containing the FeatureColumns to use as inputs
to your model. All items should be instances of classes derived from
`_DenseColumn` such as `numeric_column`, `embedding_column`,
`bucketized_column`, `indicator_column`. If you have categorical features,
you can wrap them with an `embedding_column` or `indicator_column`.
weight_collections: A list of collection names to which the Variable will be
added. Note that variables will also be added to collections
`tf.GraphKeys.GLOBAL_VARIABLES` and `ops.GraphKeys.MODEL_VARIABLES`.
trainable: If `True` also add the variable to the graph collection
`GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
cols_to_vars: If not `None`, must be a dictionary that will be filled with a
mapping from `_FeatureColumn` to list of `Variable`s. For example, after
the call, we might have cols_to_vars =
{_EmbeddingColumn(
categorical_column=_HashedCategoricalColumn(
key='sparse_feature', hash_bucket_size=5, dtype=tf.string),
dimension=10): [<tf.Variable 'some_variable:0' shape=(5, 10),
<tf.Variable 'some_variable:1' shape=(5, 10)]}
If a column creates no variables, its value will be an empty list.
cols_to_output_tensors: If not `None`, must be a dictionary that will be
filled with a mapping from '_FeatureColumn' to the associated
output `Tensor`s.
scope: variable scope.
Returns:
A `Tensor` which represents input layer of a model. Its shape
is (batch_size, first_layer_dimension) and its dtype is `float32`.
first_layer_dimension is determined based on given `feature_columns`.
Raises:
ValueError: if an item in `feature_columns` is not a `_DenseColumn`.
"""
return _internal_input_layer(
features,
feature_columns,
weight_collections=weight_collections,
trainable=trainable,
cols_to_vars=cols_to_vars,
cols_to_output_tensors=cols_to_output_tensors,
feature_name_to_output_tensors=feature_name_to_output_tensors,
scope=scope)
# TODO(akshayka): InputLayer should be a subclass of Layer, and it
# should implement the logic in input_layer using Layer's build-and-call
# paradigm; input_layer should create an instance of InputLayer and
# return the result of invoking its apply method, just as functional layers do.
class InputLayer(object):
"""An object-oriented version of `input_layer` that reuses variables."""
def __init__(self,
feature_columns,
weight_collections=None,
trainable=True,
cols_to_vars=None,
name='feature_column_input_layer',
create_scope_now=True):
"""See `input_layer`."""
self._feature_columns = feature_columns
self._weight_collections = weight_collections
self._trainable = trainable
self._cols_to_vars = cols_to_vars
self._name = name
self._input_layer_template = template.make_template(
self._name, _internal_input_layer, create_scope_now_=create_scope_now)
self._scope = self._input_layer_template.variable_scope
def __call__(self, features):
return self._input_layer_template(
features=features,
feature_columns=self._feature_columns,
weight_collections=self._weight_collections,
trainable=self._trainable,
cols_to_vars=None,
from_template=True)
@property
def name(self):
return self._name
@property
def non_trainable_variables(self):
return self._input_layer_template.non_trainable_variables
@property
def non_trainable_weights(self):
return self._input_layer_template.non_trainable_weights
@property
def trainable_variables(self):
return self._input_layer_template.trainable_variables
@property
def trainable_weights(self):
return self._input_layer_template.trainable_weights
@property
def variables(self):
return self._input_layer_template.variables
@property
def weights(self):
return self._input_layer_template.weights
def linear_model(features,
feature_columns,
units=1,
sparse_combiner='sum',
weight_collections=None,
trainable=True,
cols_to_vars=None):
"""Returns a linear prediction `Tensor` based on given `feature_columns`.
This function generates a weighted sum based on output dimension `units`.
Weighted sum refers to logits in classification problems. It refers to the
prediction itself for linear regression problems.
Note on supported columns: `linear_model` treats categorical columns as
`indicator_column`s. To be specific, assume the input as `SparseTensor` looks
like:
```python
shape = [2, 2]
{
[0, 0]: "a"
[1, 0]: "b"
[1, 1]: "c"
}
```
`linear_model` assigns weights for the presence of "a", "b", "c' implicitly,
just like `indicator_column`, while `input_layer` explicitly requires wrapping
each of categorical columns with an `embedding_column` or an
`indicator_column`.
Example of usage:
```python
price = numeric_column('price')
price_buckets = bucketized_column(price, boundaries=[0., 10., 100., 1000.])
keywords = categorical_column_with_hash_bucket("keywords", 10K)
keywords_price = crossed_column('keywords', price_buckets, ...)
columns = [price_buckets, keywords, keywords_price ...]
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
prediction = linear_model(features, columns)
```
The `sparse_combiner` argument works as follows
For example, for two features represented as the categorical columns:
```python
# Feature 1
shape = [2, 2]
{
[0, 0]: "a"
[0, 1]: "b"
[1, 0]: "c"
}
# Feature 2
shape = [2, 3]
{
[0, 0]: "d"
[1, 0]: "e"
[1, 1]: "f"
[1, 2]: "f"
}
```
with `sparse_combiner` as "mean", the linear model outputs consequently
are:
```
y_0 = 1.0 / 2.0 * ( w_a + w_b ) + w_d + b
y_1 = w_c + 1.0 / 3.0 * ( w_e + 2.0 * w_f ) + b
```
where `y_i` is the output, `b` is the bias, and `w_x` is the weight
assigned to the presence of `x` in the input features.
Args:
features: A mapping from key to tensors. `_FeatureColumn`s look up via these
keys. For example `numeric_column('price')` will look at 'price' key in
this dict. Values are `Tensor` or `SparseTensor` depending on
corresponding `_FeatureColumn`.
feature_columns: An iterable containing the FeatureColumns to use as inputs
to your model. All items should be instances of classes derived from
`_FeatureColumn`s.
units: An integer, dimensionality of the output space. Default value is 1.
sparse_combiner: A string specifying how to reduce if a categorical column
is multivalent. Except `numeric_column`, almost all columns passed to
`linear_model` are considered as categorical columns. It combines each
categorical column independently. Currently "mean", "sqrtn" and "sum" are
supported, with "sum" the default for linear model. "sqrtn" often achieves
good accuracy, in particular with bag-of-words columns.
* "sum": do not normalize features in the column
* "mean": do l1 normalization on features in the column
* "sqrtn": do l2 normalization on features in the column
weight_collections: A list of collection names to which the Variable will be
added. Note that, variables will also be added to collections
`tf.GraphKeys.GLOBAL_VARIABLES` and `ops.GraphKeys.MODEL_VARIABLES`.
trainable: If `True` also add the variable to the graph collection
`GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
cols_to_vars: If not `None`, must be a dictionary that will be filled with a
mapping from `_FeatureColumn` to associated list of `Variable`s. For
example, after the call, we might have cols_to_vars = {
_NumericColumn(
key='numeric_feature1', shape=(1,):
[<tf.Variable 'linear_model/price2/weights:0' shape=(1, 1)>],
'bias': [<tf.Variable 'linear_model/bias_weights:0' shape=(1,)>],
_NumericColumn(
key='numeric_feature2', shape=(2,)):
[<tf.Variable 'linear_model/price1/weights:0' shape=(2, 1)>]}
If a column creates no variables, its value will be an empty list. Note
that cols_to_vars will also contain a string key 'bias' that maps to a
list of Variables.
Returns:
A `Tensor` which represents predictions/logits of a linear model. Its shape
is (batch_size, units) and its dtype is `float32`.
Raises:
ValueError: if an item in `feature_columns` is neither a `_DenseColumn`
nor `_CategoricalColumn`.
"""
with variable_scope.variable_scope(None, 'linear_model') as vs:
model_name = _strip_leading_slashes(vs.name)
linear_model_layer = _LinearModel(
feature_columns=feature_columns,
units=units,
sparse_combiner=sparse_combiner,
weight_collections=weight_collections,
trainable=trainable,
name=model_name)
retval = linear_model_layer(features) # pylint: disable=not-callable
if cols_to_vars is not None:
cols_to_vars.update(linear_model_layer.cols_to_vars())
return retval
def _add_to_collections(var, weight_collections):
"""Adds a var to the list of weight_collections provided.
Handles the case for partitioned and non-partitioned variables.
Args:
var: A variable or Partitioned Variable.
weight_collections: List of collections to add variable to.
"""
for weight_collection in weight_collections:
# The layer self.add_variable call already adds it to GLOBAL_VARIABLES.
if weight_collection == ops.GraphKeys.GLOBAL_VARIABLES:
continue
# TODO(rohanj): Explore adding a _get_variable_list method on `Variable`
# so that we don't have to do this check.
if isinstance(var, variables.PartitionedVariable):
for constituent_var in list(var):
ops.add_to_collection(weight_collection, constituent_var)
else:
ops.add_to_collection(weight_collection, var)
class _FCLinearWrapper(base.Layer):
"""Wraps a _FeatureColumn in a layer for use in a linear model.
See `linear_model` above.
"""
def __init__(self,
feature_column,
units=1,
sparse_combiner='sum',
weight_collections=None,
trainable=True,
name=None,
**kwargs):
super(_FCLinearWrapper, self).__init__(
trainable=trainable, name=name, **kwargs)
self._feature_column = feature_column
self._units = units
self._sparse_combiner = sparse_combiner
self._weight_collections = weight_collections
def build(self, _):
if isinstance(self._feature_column, _CategoricalColumn):
weight = self.add_variable(
name='weights',
shape=(self._feature_column._num_buckets, self._units), # pylint: disable=protected-access
initializer=init_ops.zeros_initializer(),
trainable=self.trainable)
else:
num_elements = self._feature_column._variable_shape.num_elements() # pylint: disable=protected-access
weight = self.add_variable(
name='weights',
shape=[num_elements, self._units],
initializer=init_ops.zeros_initializer(),
trainable=self.trainable)
_add_to_collections(weight, self._weight_collections)
self._weight_var = weight
self.built = True
def call(self, builder):
weighted_sum = _create_weighted_sum(
column=self._feature_column,
builder=builder,
units=self._units,
sparse_combiner=self._sparse_combiner,
weight_collections=self._weight_collections,
trainable=self.trainable,
weight_var=self._weight_var)
return weighted_sum
class _BiasLayer(base.Layer):
"""A layer for the bias term."""
def __init__(self,
units=1,
trainable=True,
weight_collections=None,
name=None,
**kwargs):
super(_BiasLayer, self).__init__(trainable=trainable, name=name, **kwargs)
self._units = units
self._weight_collections = weight_collections
def build(self, _):
self._bias_variable = self.add_variable(
'bias_weights',
shape=[self._units],
initializer=init_ops.zeros_initializer(),
trainable=self.trainable)
_add_to_collections(self._bias_variable, self._weight_collections)
self.built = True
def call(self, _):
return self._bias_variable
def _get_expanded_variable_list(variable):
if (isinstance(variable, variables.Variable) or
resource_variable_ops.is_resource_variable(variable)):
return [variable] # Single variable case.
else: # Must be a PartitionedVariable, so convert into a list.
return list(variable)
def _strip_leading_slashes(name):
return name.rsplit('/', 1)[-1]
class _LinearModel(training.Model):
"""Creates a linear model using feature columns.
See `linear_model` for details.
"""
def __init__(self,
feature_columns,
units=1,
sparse_combiner='sum',
weight_collections=None,
trainable=True,
name=None,
**kwargs):
super(_LinearModel, self).__init__(name=name, **kwargs)
self._feature_columns = _normalize_feature_columns(feature_columns)
self._weight_collections = list(weight_collections or [])
if ops.GraphKeys.GLOBAL_VARIABLES not in self._weight_collections:
self._weight_collections.append(ops.GraphKeys.GLOBAL_VARIABLES)
if ops.GraphKeys.MODEL_VARIABLES not in self._weight_collections:
self._weight_collections.append(ops.GraphKeys.MODEL_VARIABLES)
column_layers = {}
for column in sorted(self._feature_columns, key=lambda x: x.name):
with variable_scope.variable_scope(
None, default_name=column._var_scope_name) as vs: # pylint: disable=protected-access
# Having the fully expressed variable scope name ends up doubly
# expressing the outer scope (scope with which this method was called)
# in the name of the variable that would get created.
column_name = _strip_leading_slashes(vs.name)
column_layer = _FCLinearWrapper(column, units, sparse_combiner,
self._weight_collections, trainable,
column_name, **kwargs)
column_layers[column_name] = column_layer
self._column_layers = self._add_layers(column_layers)
self._bias_layer = _BiasLayer(
units=units,
trainable=trainable,
weight_collections=self._weight_collections,
name='bias_layer',
**kwargs)
self._cols_to_vars = {}
def cols_to_vars(self):
"""Returns a dict mapping _FeatureColumns to variables.
See `linear_model` for more information.
This is not populated till `call` is called i.e. layer is built.
"""
return self._cols_to_vars
def call(self, features):
with variable_scope.variable_scope(self.name):
for column in self._feature_columns:
if not isinstance(column, (_DenseColumn, _CategoricalColumn)):
raise ValueError(
'Items of feature_columns must be either a '
'_DenseColumn or _CategoricalColumn. Given: {}'.format(column))
weighted_sums = []
ordered_columns = []
builder = _LazyBuilder(features)
for layer in sorted(self._column_layers.values(), key=lambda x: x.name):
column = layer._feature_column # pylint: disable=protected-access
ordered_columns.append(column)
weighted_sum = layer(builder)
weighted_sums.append(weighted_sum)
self._cols_to_vars[column] = ops.get_collection(
ops.GraphKeys.GLOBAL_VARIABLES, scope=layer.scope_name)
_verify_static_batch_size_equality(weighted_sums, ordered_columns)
predictions_no_bias = math_ops.add_n(
weighted_sums, name='weighted_sum_no_bias')
predictions = nn_ops.bias_add(
predictions_no_bias,
self._bias_layer( # pylint: disable=not-callable
builder,
scope=variable_scope.get_variable_scope()), # pylint: disable=not-callable
name='weighted_sum')
bias = self._bias_layer.variables[0]
self._cols_to_vars['bias'] = _get_expanded_variable_list(bias)
return predictions
def _add_layers(self, layers):
# "Magic" required for keras.Model classes to track all the variables in
# a list of layers.Layer objects.
# TODO(ashankar): Figure out API so user code doesn't have to do this.
for name, layer in layers.items():
setattr(self, 'layer-%s' % name, layer)
return layers
def _transform_features(features, feature_columns):
"""Returns transformed features based on features columns passed in.
Please note that most probably you would not need to use this function. Please
check `input_layer` and `linear_model` to see whether they will
satisfy your use case or not.
Example:
```python
# Define features and transformations
crosses_a_x_b = crossed_column(
columns=["sparse_feature_a", "sparse_feature_b"], hash_bucket_size=10000)
price_buckets = bucketized_column(
source_column=numeric_column("price"), boundaries=[...])
columns = [crosses_a_x_b, price_buckets]
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
transformed = transform_features(features=features, feature_columns=columns)
assertCountEqual(columns, transformed.keys())
```
Args:
features: A mapping from key to tensors. `_FeatureColumn`s look up via these
keys. For example `numeric_column('price')` will look at 'price' key in
this dict. Values can be a `SparseTensor` or a `Tensor` depends on
corresponding `_FeatureColumn`.
feature_columns: An iterable containing all the `_FeatureColumn`s.
Returns:
A `dict` mapping `_FeatureColumn` to `Tensor` and `SparseTensor` values.
"""
feature_columns = _normalize_feature_columns(feature_columns)
outputs = {}
with ops.name_scope(
None, default_name='transform_features', values=features.values()):
builder = _LazyBuilder(features)
for column in sorted(feature_columns, key=lambda x: x.name):
with ops.name_scope(None, default_name=column.name):
outputs[column] = builder.get(column)
return outputs
def make_parse_example_spec(feature_columns):
"""Creates parsing spec dictionary from input feature_columns.
The returned dictionary can be used as arg 'features' in
`tf.io.parse_example`.
Typical usage example:
```python
# Define features and transformations
feature_a = categorical_column_with_vocabulary_file(...)
feature_b = numeric_column(...)
feature_c_bucketized = bucketized_column(numeric_column("feature_c"), ...)
feature_a_x_feature_c = crossed_column(
columns=["feature_a", feature_c_bucketized], ...)
feature_columns = set(
[feature_b, feature_c_bucketized, feature_a_x_feature_c])
features = tf.io.parse_example(
serialized=serialized_examples,
features=make_parse_example_spec(feature_columns))
```
For the above example, make_parse_example_spec would return the dict:
```python
{
"feature_a": parsing_ops.VarLenFeature(tf.string),
"feature_b": parsing_ops.FixedLenFeature([1], dtype=tf.float32),
"feature_c": parsing_ops.FixedLenFeature([1], dtype=tf.float32)
}
```
Args:
feature_columns: An iterable containing all feature columns. All items
should be instances of classes derived from `_FeatureColumn`.
Returns:
A dict mapping each feature key to a `FixedLenFeature` or `VarLenFeature`
value.
Raises:
ValueError: If any of the given `feature_columns` is not a `_FeatureColumn`
instance.
"""
result = {}
for column in feature_columns:
if not isinstance(column, _FeatureColumn):
raise ValueError('All feature_columns must be _FeatureColumn instances. '
'Given: {}'.format(column))
config = column._parse_example_spec # pylint: disable=protected-access
for key, value in six.iteritems(config):
if key in result and value != result[key]:
raise ValueError('feature_columns contain different parse_spec for key '
'{}. Given {} and {}'.format(key, value, result[key]))
result.update(config)
return result
def _embedding_column(categorical_column,
dimension,
combiner='mean',
initializer=None,
ckpt_to_load_from=None,
tensor_name_in_ckpt=None,
max_norm=None,
trainable=True):
"""`_DenseColumn` that converts from sparse, categorical input.
Use this when your inputs are sparse, but you want to convert them to a dense
representation (e.g., to feed to a DNN).
Inputs must be a `_CategoricalColumn` created by any of the
`categorical_column_*` function. Here is an example of using
`embedding_column` with `DNNClassifier`:
```python
video_id = categorical_column_with_identity(
key='video_id', num_buckets=1000000, default_value=0)
columns = [embedding_column(video_id, 9),...]
estimator = tf.estimator.DNNClassifier(feature_columns=columns, ...)
label_column = ...
def input_fn():
features = tf.io.parse_example(
..., features=make_parse_example_spec(columns + [label_column]))
labels = features.pop(label_column.name)
return features, labels
estimator.train(input_fn=input_fn, steps=100)
```
Here is an example using `embedding_column` with model_fn:
```python
def model_fn(features, ...):
video_id = categorical_column_with_identity(
key='video_id', num_buckets=1000000, default_value=0)
columns = [embedding_column(video_id, 9),...]
dense_tensor = input_layer(features, columns)
# Form DNN layers, calculate loss, and return EstimatorSpec.
...
```
Args:
categorical_column: A `_CategoricalColumn` created by a
`categorical_column_with_*` function. This column produces the sparse IDs
that are inputs to the embedding lookup.
dimension: An integer specifying dimension of the embedding, must be > 0.
combiner: A string specifying how to reduce if there are multiple entries
in a single row. Currently 'mean', 'sqrtn' and 'sum' are supported, with
'mean' the default. 'sqrtn' often achieves good accuracy, in particular
with bag-of-words columns. Each of this can be thought as example level
normalizations on the column. For more information, see
`tf.embedding_lookup_sparse`.
initializer: A variable initializer function to be used in embedding
variable initialization. If not specified, defaults to
`tf.compat.v1.truncated_normal_initializer` with mean `0.0` and
standard deviation `1/sqrt(dimension)`.
ckpt_to_load_from: String representing checkpoint name/pattern from which to
restore column weights. Required if `tensor_name_in_ckpt` is not `None`.
tensor_name_in_ckpt: Name of the `Tensor` in `ckpt_to_load_from` from
which to restore the column weights. Required if `ckpt_to_load_from` is
not `None`.
max_norm: If not `None`, embedding values are l2-normalized to this value.
trainable: Whether or not the embedding is trainable. Default is True.
Returns:
`_DenseColumn` that converts from sparse input.
Raises:
ValueError: if `dimension` not > 0.
ValueError: if exactly one of `ckpt_to_load_from` and `tensor_name_in_ckpt`
is specified.
ValueError: if `initializer` is specified and is not callable.
RuntimeError: If eager execution is enabled.
"""
if (dimension is None) or (dimension < 1):
raise ValueError('Invalid dimension {}.'.format(dimension))
if (ckpt_to_load_from is None) != (tensor_name_in_ckpt is None):
raise ValueError('Must specify both `ckpt_to_load_from` and '
'`tensor_name_in_ckpt` or none of them.')
if (initializer is not None) and (not callable(initializer)):
raise ValueError('initializer must be callable if specified. '
'Embedding of column_name: {}'.format(
categorical_column.name))
if initializer is None:
initializer = init_ops.truncated_normal_initializer(
mean=0.0, stddev=0.01 / math.sqrt(dimension))
embedding_shape = categorical_column._num_buckets, dimension # pylint: disable=protected-access
def _creator(weight_collections, scope):
embedding_column_layer = _EmbeddingColumnLayer(
embedding_shape=embedding_shape,
initializer=initializer,
weight_collections=weight_collections,
trainable=trainable,
name='embedding_column_layer')
return embedding_column_layer(None, scope=scope) # pylint: disable=not-callable
return _EmbeddingColumn(
categorical_column=categorical_column,
dimension=dimension,
combiner=combiner,
layer_creator=_creator,
ckpt_to_load_from=ckpt_to_load_from,
tensor_name_in_ckpt=tensor_name_in_ckpt,
max_norm=max_norm,
trainable=trainable)
def _numeric_column(key,
shape=(1,),
default_value=None,
dtype=dtypes.float32,
normalizer_fn=None):
"""Represents real valued or numerical features.
Example:
```python
price = numeric_column('price')
columns = [price, ...]
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
dense_tensor = input_layer(features, columns)
# or
bucketized_price = bucketized_column(price, boundaries=[...])
columns = [bucketized_price, ...]
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction = linear_model(features, columns)
```
Args:
key: A unique string identifying the input feature. It is used as the
column name and the dictionary key for feature parsing configs, feature
`Tensor` objects, and feature columns.
shape: An iterable of integers specifies the shape of the `Tensor`. An
integer can be given which means a single dimension `Tensor` with given
width. The `Tensor` representing the column will have the shape of
[batch_size] + `shape`.
default_value: A single value compatible with `dtype` or an iterable of
values compatible with `dtype` which the column takes on during
`tf.Example` parsing if data is missing. A default value of `None` will
cause `tf.io.parse_example` to fail if an example does not contain this
column. If a single value is provided, the same value will be applied as
the default value for every item. If an iterable of values is provided,
the shape of the `default_value` should be equal to the given `shape`.
dtype: defines the type of values. Default value is `tf.float32`. Must be a
non-quantized, real integer or floating point type.
normalizer_fn: If not `None`, a function that can be used to normalize the
value of the tensor after `default_value` is applied for parsing.
Normalizer function takes the input `Tensor` as its argument, and returns
the output `Tensor`. (e.g. lambda x: (x - 3.0) / 4.2). Please note that
even though the most common use case of this function is normalization, it
can be used for any kind of Tensorflow transformations.
Returns:
A `_NumericColumn`.
Raises:
TypeError: if any dimension in shape is not an int
ValueError: if any dimension in shape is not a positive integer
TypeError: if `default_value` is an iterable but not compatible with `shape`
TypeError: if `default_value` is not compatible with `dtype`.
ValueError: if `dtype` is not convertible to `tf.float32`.
"""
shape = _check_shape(shape, key)
if not (dtype.is_integer or dtype.is_floating):
raise ValueError('dtype must be convertible to float. '
'dtype: {}, key: {}'.format(dtype, key))
default_value = fc_utils.check_default_value(shape, default_value, dtype, key)
if normalizer_fn is not None and not callable(normalizer_fn):
raise TypeError(
'normalizer_fn must be a callable. Given: {}'.format(normalizer_fn))