
Mouting encrypted WD drives in linux
Thomas Kaeding (thomas.a.kaeding@gmail.com)
20170205; last modified 20170509 as version 0.3

The purpose of this document is to explain how to mount an encrypted WD drive in a linux system,
after the drive has been removed from its enclosure and the USB-to-SATA board has been removed. It
must also be placed in a new enclosure that does not use hardware encryption or installed into a
desktop and connected to an SATA port. These instructions assume that you can use a linux system and
know how to find the terminal. All commands in this document are meant to be used in the terminal.
We also assume that you know how to use the sudo command, and that you assume the risks of
damaging your system or data.

This document contains instructions only for drives that use these chips for hardware encryption:

JMicron JMS538S
Symwave SW6316
Initio INIC-1607E
PLX OXUF943SE

We also only deal with 256-bit keys and AES encryption in ECB mode. There are a few drives with
128-bit keys or XTS mode. Dealing with them is still work in progress.

You will need the following software packages. Be aware that the exact names can vary among linux
distributions. Most of these, except kernel development packages, are included with most installations
of linux.

bash
GNU coreutils
util-linux
sudo
cryptsetup
openssl
vim (for the xxd utility)
file
multipart-tools

For the Symwave chip, you also need

python
pycrypto

For the JMicron and Initio chips, you also need

kernel development (may be called “kernel-dev”)
(in Ubuntu, use “sudo apt-get build-dep linux-image-$(uname -r)”)

gcc (same version that was used to build your kernel)
kmod or modutils

First Steps

If you use a new external enclosure, be careful that it presents a single drive to your system. Some
break drives over 2TB into multiple drives of 2TB each.

First, determine where your system puts its device file for the drive. Look for an entry in
/proc/partitions that is a single disk without partitions. For example, you might see the line

 8 32 3907018584 sdc

without any lines for sdc1. Check that you have found the right one with the command

sudo file -s /dev/sdc

If you see

/dev/sdc: data

and not some information about MBR or filesystems, then you probably have it. If you have other
encrypted devices on your system, be careful that you indeed have the correct one.

We are going to be creating a few files along the way. Make a directory for them and enter it:

mkdir wd
cd wd

Did you set a password for the drive when it was in the original enclosure? If so, you need to generate
the key encryption key (KEK) from it. Copy the code from Appendix A into a file called wd_kdf.sh
and make it executable:

chmod +x wd_kdf.sh

Generate the KEK. For example, if the password was “mypassword”:

./wd_kdf.sh mypassword > kek.hex

If you did not set a password for the drive, then use the standard KEK (pi) and copy it into a file:

echo 03141592653589793238462643383279fcebea6d9aca7686cdc7b9d9bcc7cd86 > kek.hex

How to extract the disk encryption key (DEK) and set up the decryption filter is specific to which
encryption chip is on the USB-to-SATA board.

JMicron JMS538S chip

Read the keyblock from the end of the disk. The location of this block depends on the size of your disk.
The middle column in this table is decimal, the third column hexadecimal.

50 0GB 976769056 0x03A385020
750 GB 1465143328 0x057545020
1 TB 1953519648 0x074705820
2 TB 3907024928 0x0E8E07820
3 TB 5860528160 0x15D509020
4 TB 7814031392 0x1D1C0A820

So, for example, if you have a 4TB disk at sdc, use this command:

dd if=/dev/sdc bs=512 skip=7814031392 count=1 of=kb.bin

Check to see that you have indeed obtained the keyblock by doing a hexdump and look for “WDv1”:

hexdump -C kb.bin

00000000 57 44 76 31 b3 db 00 00 00 b8 bf d1 01 00 00 00 |WDv1³Û...¸¿Ñ....|
00000010 03 00 00 00 00 00 f0 00 00 00 00 00 00 00 00 00 |......ð.........|
00000020 01 00 00 00 00 00 46 50 00 00 00 00 00 00 00 00 |......FP........|
00000030 00 02 ff 00 00 00 00 00 00 00 00 00 00 00 00 00 |..ÿ.............|
00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000050 20 00 3a 6a 00 00 00 01 00 00 00 00 57 44 76 31 | .:j........WDv1|
00000060 09 f8 45 57 df 43 28 50 2c 9e 4c 92 a0 93 b1 ed |.øEWßC(P,.L. .±í|
00000070 1c 7e a7 1a 2a a5 8f 58 f5 06 c1 b5 6b 26 e7 18 |.~§.*¥.Xõ.Áµk&ç.|
00000080 5f d8 6e 2d 42 92 fe 5b 06 bc 30 b4 65 0f 87 b6 |_Øn-B.þ[.¼0´e..¶|

If the keyblock was not found, try the script in Appendix D.

The JMS538S chip does everything backwards, so we need to reverse the bytes of our KEK:

cat kek.hex | grep -o .. | tac | echo "$(tr -d '\n')" > kek1.hex

In order to extract the disk encryption key (DEK), we have to reverse each block of 16 bytes, decrypt
with AES in ECB mode, and then reverse each block again. These three commands will do it:

for i in `seq 0 31`; do
dd if=kb.bin bs=16 count=1 skip=$i status=none | \

xxd -p | grep -o .. | tac | echo "$(tr -d '\n')" | \
xxd -p -r >> kb1.bin

done
openssl enc -d -aes-256-ecb -K `cat kek1.hex` \

-nopad -in kb1.bin -out kb2.bin
for i in `seq 0 31`; do

dd if=kb2.bin bs=16 count=1 skip=$i status=none | \
xxd -p | grep -o .. | tac | echo "$(tr -d '\n')" | \
xxd -p -r >> kb3.bin

done

The backslashes at the ends of lines indicate that the command is continued on the next line.

To check that it worked, look for “DEK1” in the seventeenth line of the output of hexdump:

sudo hexdump -C kb3.bin

000000f0 47 00 00 00 d2 00 00 00 3b 00 00 00 31 00 00 00 |G...Ò...;...1...|
00000100 44 45 4b 31 c1 91 00 00 59 e0 c8 57 3b af 60 55 |DEK1Á...YàÈW;¯`U|
00000110 cc 76 eb 00 e6 12 a3 92 03 1f 24 0a e8 10 ad e9 |Ìvë.æ.£...$.è.-é|

Extract the disk encryption key (DEK), which is in reverse order:

dd if=kb3.bin bs=1 skip=268 count=16 of=dek0.bin status=none
dd if=kb3.bin bs=1 skip=288 count=16 status=none >> dek0.bin

Convert to hexadecimal and reverse it to get the correct DEK:

xxd -p -c 32 dek0.bin | grep -o .. | tac | \
echo "$(tr -d '\n')" > dek.hex

Now for the hardest part: we need to build a new encryption module for the kernel. We will use this
module merely to reverse the order of each 16-byte block. You will need to install all the necessary
packages for kernel development. The C code for the new module and instructions for building it are in
Appendix C. When you are finished building it, return to the wd directory that you made at the start.

Now that we have the DEK and the new module, we can set up the encryption filter. In my example,
the drive was at /dev/sdc, so I would use these commands:

echo "fedcba9876543210" | xxd -p -r | sudo cryptsetup \
-d - --hash=plain -c permute-ecb --key-size=64 \
create wd-layer1 /dev/sdc

cat dek.hex | xxd -p -r | sudo cryptsetup -d - --hash=plain \
--key-size=256 -c aes-ecb create wd-layer2 /dev/mapper/wd-layer1

echo "fedcba9876543210" | xxd -p -r | sudo cryptsetup \
-d - --hash=plain -c permute-ecb --key-size=64 \
create wd /dev/mapper/wd-layer2

Check for success:

sudo file -sL /dev/mapper/wd

If you see something like

/dev/mapper/wd: DOS/MBR boot sector …

then you have succeeded in decrypting your disk.

You can delete all the temporary files that we created, except dek.hex and permute.ko.You will
need them to mount the disk again in the future.

Symwave SW6316 chip

Read the keyblock from the end of the disk. The location of this block depends on the size of your disk.
The middle column in this table is decimal, the third column hexadecimal.

500 GB 976770435 0x03A385583
750 GB 1465144707 0x057545583
1 TB 1953521027 0x074705D83
2 TB 3907026307 0x0E8E07D83

So, for example, if you have a 2TB disk at sdc, use this command:

dd if=/dev/sdc bs=512 skip=3907026307 count=1 of=kb0.bin

Check to see that you have indeed obtained the keyblock by doing a hexdump and look for “WMYS”:

hexdump -C kb0.bin

00000000 57 4d 59 53 fa 01 01 f8 00 00 00 00 02 00 00 00 |WMYSú..ø........|
00000010 b7 1e 9a 37 36 40 5d db 42 25 89 a0 9e 97 b0 8d |·..76@]ÛB%. ..°.|
00000020 fa bc 6f 46 4d 54 57 25 ab 44 02 e0 6a 5a 07 f0 |ú¼oFMTW%«D.àjZ.ð|
00000030 96 f4 79 ba e7 cc f2 80 15 88 b9 b5 72 b1 03 20 |.ôyºçÌò...¹µr±. |
00000040 f3 65 eb 88 91 70 f9 e7 09 9a ee cb 58 05 ad 97 |óeë..pùç..îËX.-.|
00000050 e3 6e b3 6d 5f 78 c9 cd fe cb 85 c0 43 50 06 8d |ãn³m_xÉÍþË.ÀCP..|
00000060 0f b6 50 6e 1a 36 30 8c 8e 25 9b fa 32 26 6b 6a |.¶Pn.60..%.ú2&kj|
00000070 04 02 72 61 c0 a9 f3 65 a1 b4 b5 55 0c d4 e7 c7 |..raÀ©óe¡´µU.ÔçÇ|
00000080 f1 52 3b f2 46 b3 e8 69 00 00 00 00 00 00 00 00 |ñR;òF³èi........|

If the keyblock was not found, try the script in Appendix D.

Convert the keyblock to hexadecimal:

xxd -p -c 16 kb0.bin > kb0.hex

The Symwave chip is based on a Motorola processor, so we have to fix the endianness of the keyblock.
We do this by reversing the order of each 4-byte block with this command:

cat kb0.hex | grep -o | tac | echo "$(tr -d '\n')" | \
 grep -o .. | tac | echo "$(tr -d '\n')" | xxd -p -r > kb.bin

The backslash at the end of the first line means that the command is continued on the next line.

Extract the wrapped disk encryption key (eDEK):

dd if=kb.bin bs=8 skip=2 count=5 of=edek.bin

We now need the unwrapper. First, be sure that the pycrypto package is already installed on your
system. The python code for the unwrapper is in Appendix B. Copy it into a file called unwrap.py and
make it executable:

chmod +x unwrap.py

Unwrap the disk encryption key (DEK):

./unwrap.py `xxd -p -c 40 edek.bin` `cat kek.hex` > dek0.hex

We need to fix the endianness of the DEK:

cat dek0.hex | grep -o | tac | echo "$(tr -d '\n')" | \
 grep -o .. |tac | echo "$(tr -d '\n')" > dek.hex

Now that we have the DEK, we can set up the encryption filter. In my example, the drive was at
/dev/sdc, so I would use this command:

cat dek.hex | xxd -p -r | sudo cryptsetup -d - --hash=plain \
--key-size=256 -c aes-ecb create wd /dev/sdc

Check for success:

sudo file -sL /dev/mapper/wd

If you see something like

/dev/mapper/wd: DOS/MBR boot sector …

then you have succeeded in decrypting your disk.

You can delete all the temporary files that we created, except dek.hex. You will need it to mount the
disk again in the future.

Initio INIC-1607E chip

Read the keyblock from the end of the disk. The location of this block depends on the size of your disk.
The middle column in this table is decimal, the third column hexadecimal.

500 GB 976769032 0x03A385008
750 GB 1465143304 0x057545008
1 TB 1953519624 0x074705808 (unverified)
2 TB 3907024904 0x0E8E07808

So, for example, if you have a 2TB disk at sdc, use this command:

dd if=/dev/sdc bs=512 skip=3907024904 count=1 of=kb.bin

Check to see that you have indeed obtained the keyblock by doing a hexdump and look for “WD” at
the beginning:

hexdump -C kb.bin

00000000 57 44 01 14 00 00 00 00 00 00 00 00 00 00 00 00 |WD..............|
00000010 00 00 00 00 1d 07 68 00 00 00 00 00 1d 07 68 00 |......h.......h.|
00000020 00 00 00 00 00 14 e0 00 20 00 00 00 00 00 00 00 |......à.|
00000030 00 00 00 00 00 00 00 00 00 00 00 00 57 44 01 14 |............WD..|
00000040 32 92 ed 81 13 26 9e 98 df 1b a4 87 ef c6 37 3c |2.í..&..ß.¤.ïÆ7<|

If the keyblock was not found, try the script in Appendix D.

We have to fix the endianness of the keyblock. We do this by reversing the order of each 4-byte block
with this command:

cat kb.bin | xxd -p -c 32 | grep -o | tac | \
echo "$(tr -d '\n')" | grep -o .. | tac | \
echo "$(tr -d '\n')" | xxd -p -r > kb1.bin

The backslash at the end of the first line means that the command is continued on the next line.

The KEK also has to be fixed. We must swap its two halves, and reverse it. We can do this all in one
fell swoop with this command:

cat kek.hex | grep -o | tac | \
echo "$(tr -d '\n')" | grep -o .. | tac | \
echo "$(tr -d '\n')" > kek1.hex

Decrypt the keyblock:

openssl enc -d -aes-256-ecb -K `cat kek1.hex` \
-nopad -in kb1.bin -out kb2.bin

Extract the disk encryption key (DEK):

dd if=kb2.bin bs=4 skip=103 count=8 | xxd -p -c 32 > dek1.hex

We have to fix up this DEK by reversing each half and changing the endianness:

cat dek1.hex | grep -o | tac | \
echo "$(tr -d '\n')" | grep -o | tac | \
echo "$(tr -d '\n')" > dek.hex

Now for the hardest part: we need to build a new encryption module for the kernel. We will use this
module merely to reverse the order of each 4-byte block. You will need to install all the necessary
packages for kernel development. The C code for the new module and instructions for building it are in
Appendix C. When you are finished building it, return to the wd directory that you made at the start.

Now that we have the DEK and the new module, we can set up the encryption filter. In my example,
the drive was at /dev/sdc, so I would use these commands:

echo "32107654ba98fedc" | xxd -p -r | sudo cryptsetup \
-d - --hash=plain -c permute-ecb --key-size=64 \
create wd-layer1 /dev/sdc

cat dek.hex | xxd -p -r | sudo cryptsetup -d - --hash=plain \
--key-size=256 -c aes-ecb create wd-layer2 /dev/mapper/wd-layer1

echo "32107654ba98fedc" | xxd -p -r | sudo cryptsetup \
-d - --hash=plain -c permute-ecb --key-size=64 \
create wd /dev/mapper/wd-layer2

Check for success:

sudo file -sL /dev/mapper/wd

If you see something like

/dev/mapper/wd: DOS/MBR boot sector …

then you have succeeded in decrypting your disk.

You can delete all the temporary files that we created, except dek.hex and permute.ko. You will
need them to mount the disk again in the future.

PLX OXUF943SE chip

Read the keyblock from the end of the disk. The location of this block depends on the size of your disk.
The middle column in this table is decimal, the third column hexadecimal.

500 GB ? ?
750 GB ? ?
1 TB ? ?
2 TB ? ?
3 TB 5860533120 15D50A380

So, for example, if you have a 3TB disk at sdc, use this command:

dd if=/dev/sdc bs=512 skip=5860533120 count=1 of=kb.bin

Check to see that you have indeed obtained the keyblock by doing a hexdump and look for “SInE”:

hexdump -C kb.bin

00000000 53 49 6e 45 01 00 00 00 04 00 64 01 01 85 84 00 |SInE......d.....|
00000010 01 00 00 00 dc 22 c2 ed f2 a5 7f 73 23 cf 58 28 |....Ü"Âíò¥.s#ÏX(|
00000020 4d 6f 4d 6f b5 fb 1a d1 9f f9 2a 72 70 51 93 b8 |MoMoµû.Ñ.ù*rpQ.¸|
00000030 4b 74 2c 6a 67 19 3f 4c c1 f9 57 6f ab e6 07 e5 |Kt,jg.?LÁùWo«æ.å|
00000040 db e0 49 3c ad 00 89 b3 0d cb ef a1 e7 c5 75 9a |ÛàI<-..³.Ëï¡çÅu.|
00000050 e2 db 1f 5f ff ff ff ff ff ff ff ff ff ff ff ff |âÛ._ÿÿÿÿÿÿÿÿÿÿÿÿ|

If the keyblock was not found, try the script in Appendix D.

In order to decrypt the keyblock, we need to remove 20 bytes from the beginning:

dd if=kb.bin bs=4 skip=5 count=64 of=kb1.bin

We also need to reverse the order and fix the endianness of the KEK:

cat kek.hex | grep -o | tac | echo "$(tr -d '\n')" > kek1.hex

Decrypt the keyblock:

openssl enc -d -aes-256-ecb -K `cat kek1.hex` \
-nopad -in kb1.bin -out kb2.bin

The backslash at the end of the first line indicates that the command continues on the next line.

Extract the disk encryption key (DEK):

dd if=kb2.bin bs=32 count=1 | xxd -p -c 32 > dek1.hex

Reverse the order and fix the endianness of the DEK:

cat dek1.hex | grep -o | tac | echo "$(tr -d '\n')" > dek.hex

Now that we have the DEK, we can set up the encryption filter on the disk. In my example, the drive
was at /dev/sdc, so I would use this command:

cat dek.hex | xxd -p -r | sudo cryptsetup -d - --hash=plain \
--key-size=256 -c aes-ecb create wd /dev/sdc

Check for success:

sudo file -sL /dev/mapper/wd

If you see something like

/dev/mapper/wd: DOS/MBR boot sector …

then you have succeeded in decrypting your disk.

You can delete all the temporary files that we created, except dek.hex. You will need that file to
mount the disk again in the future.

Mounting

Next, depending on your system, the partitions might be mounted automatically. If not, then we must
probe the partition table and load the results into the kernel. Add the partitions with

sudo kpartx -a /dev/mapper/wd

Your partitions will appear as /dev/mapper/wd1 etc. Mount as follows:

sudo mkdir /mnt/wd1
sudo mount /dev/mapper/wd1 /mnt/wd1

If nothing went wrong, then you can now access your files in /mnt/wd1.

Mounting can be automated at boot time, and the method for doing so varies from system to system.

Appendix A

Code for the bash script wd_kdf.sh:

#!/bin/bash

KEK=`echo -n "WDC.$1" | iconv -f UTF-8 -t UTF-16LE | xxd -p -c 64`

for i in `seq 1 1000`; do
 KEK=`echo -n $KEK | xxd -p -r | sha256sum | cut -d \ -f 1`
 done

echo $KEK

Appendix B

Code for the RFC 3394 unwrapping program unwrap.py, modified from
https://gist.github.com/kurtbrose/4243633. It requires that the pycrypto package be installed.

#!/usr/bin/python

import struct
from Crypto.Cipher import AES

QUAD = struct.Struct('>Q')

def aes_unwrap_key_and_iv(kek, wrapped):
 n = len(wrapped)/8 - 1
 R = [None]+[wrapped[i*8:i*8+8] for i in range(1, n+1)]
 A = QUAD.unpack(wrapped[:8])[0]
 decrypt = AES.new(kek).decrypt
 for j in range(5,-1,-1): #counting down
 for i in range(n, 0, -1): #(n, n-1, ..., 1)
 ciphertext = QUAD.pack(A^(n*j+i)) + R[i]
 B = decrypt(ciphertext)
 A = QUAD.unpack(B[:8])[0]
 R[i] = B[8:]
 return "".join(R[1:]), A

def aes_unwrap_key(kek, wrapped, iv=0xa6a6a6a6a6a6a6a6):
 key, key_iv = aes_unwrap_key_and_iv(kek, wrapped)
 if key_iv != iv:
 raise ValueError("Integrity Check Failed: "+hex(key_iv)+
 " (expected "+hex(iv)+")")
 return key

if __name__ == "__main__":
 import sys
 import binascii
 CIPHER = binascii.unhexlify(sys.argv[1])
 KEK = binascii.unhexlify(sys.argv[2])
 print binascii.hexlify(aes_unwrap_key(KEK, CIPHER))

Appendix C

Code for the cryptographic module that simply permutes each block of 16 bytes. This was written for
linux kernel 3.13.2. You may need to modify it to fit your system. Instructions for building are below.

#include <linux/module.h>
#include <linux/crypto.h>

static u8 encvec[16], decvec[16];

int permute_setkey(struct crypto_tfm *tfm, const u8 *in_key,
unsigned int key_len)

{
 int i;
 for (i=0;i<key_len;i++) {
 encvec[2*i] = in_key[i] >> 4;
 encvec[2*i+1] = in_key[i] & 0x0f;
 }
 for (i=0;i<16;i++)
 decvec[encvec[i]] = (u8)i;
 return 0;
}

static void permute_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
 int i;
 u8 temp[16];
 for (i=0;i<16;i++)
 temp[i] = in[i];
 for (i=0;i<16;i++)
 out[i] = temp[encvec[i]];
 return;
}

static void permute_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
 int i;
 u8 temp[16];
 for (i=0;i<16;i++)
 temp[i] = in[i];
 for (i=0;i<16;i++)
 out[i] = temp[decvec[i]];
 return;
}

static struct crypto_alg permute_alg = {
 .cra_name = "permute",
 .cra_driver_name = "permute",
 .cra_priority = 100,
 .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
 .cra_blocksize = 16,
 .cra_ctxsize = 0,
 .cra_alignmask = 3,

 .cra_module = THIS_MODULE,
 .cra_u = {
 .cipher = {
 .cia_min_keysize = 8,
 .cia_max_keysize = 8,
 .cia_setkey = permute_setkey,
 .cia_encrypt = permute_encrypt,
 .cia_decrypt = permute_decrypt
 }
 }
};

static int __init permute_init(void)
{
 return crypto_register_alg(&permute_alg);
}

static void __exit permute_fini(void)
{
 crypto_unregister_alg(&permute_alg);
}

module_init(permute_init);
module_exit(permute_fini);

MODULE_DESCRIPTION("permutes the bytes of each 16-byte block");
MODULE_LICENSE("GPL");
MODULE_ALIAS("permute");

In order to build this module, you will need to install all the necessary packages for kernel
development. This code was written for linux kernel 3.13.2, so you may have to modify it to fit your
kernel. It may be helpful to look at other modules in /usr/src/linux-3.13.2/crypto, or in whatever
directory your kernel source is installed. I will use 3.13.2 as my example.

Copy the code for the module into a new file call it permute.c.

Create a makefile:

echo “obj-m := permute.o” > Makefile

Build:

make -C /lib/modules/`uname -r`/build M=$PWD

This creates a file called permute.ko. Load the module into the kernel:

sudo insmod permute.ko

If you want to have the module permanently on your system, copy it:

sudo cp permute.ko /lib/modules/3.13.2/kernel/crypto/

and configure it:

sudo depmod

After that, anytime you want to load it, use this command:

sudo modprobe permute

Appendix D

Bash script to help find the keyblock at the end of a disk, after it has been removed from the original
enclosure. This script is called with one argument, which is the name of the drive in linux, such as
“sdc”, without the preceeding “/dev/”.

#!/bin/bash

DEVICE="$1"

SIZE=`cat /proc/partitions | grep $DEVICE | awk '{print $3}'`
SIZE=`expr $SIZE * 2`

LOWERLIMIT=`expr $SIZE - 8192` # 4 MB should be enough

for i in `seq $SIZE -1 $LOWERLIMIT`; do
 FIRSTLINE=`dd if=/dev/$DEVICE skip=$i count=1 status=none | \
 xxd -p | head -n 1`
 if [`echo $FIRSTLINE | grep "^57447631"`]; then
 echo "found JMicron keyblock at sector $i"
 break
 fi
 if [`echo $FIRSTLINE | grep "^574d5953"`]; then
 echo "found Symwave keyblock at sector $i"
 break
 fi
 if [`echo $FIRSTLINE | grep "^57440114"`]; then
 echo "found Initio keyblock at sector $i"
 break
 fi
 if [`echo $FIRSTLINE | grep "^53496e45"`]; then
 echo "found PLX keyblock at sector $i"
 break
 fi
 done
echo "dumping to kb.bin"
dd if=/dev/$DEVICE skip=$i count=1 of=kb.bin status=none

Acknowledgements

Information about these drives comes mainly from “got HW crypto” by G. Alendal, C. Kison, and
modg (http://eprint.iacr.org/2015/1002.pdf). Much of the same information can be found in the source
code of the reallymine project (https://github.com/andlabs/reallymine). The password unwrapping
program in python is based on the one from Kurt Rose at https://gist.github.com/kurtbrose/4243633.
Most of the keyblock locations are from athomic1's information in the comments to the reallymine
project.

