-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
150 lines (110 loc) · 5.81 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from torch import nn, cat
from torch.nn import init
# Create Network architecture
class MyNet(nn.Module):
def __init__(self, x_shape, config):
self.x_shape = x_shape
super(MyNet, self).__init__()
# first cnn layers for amino
self.l1 = nn.ModuleList()
self.l1.append(
nn.Conv1d(in_channels=1, out_channels=config['cnn_channels'], kernel_size=(config['kernel_size'],),
stride=(1,), padding=(int((config['kernel_size'] - 1) / 2),)))
self.l1.append(nn.ELU())
for layer in range(config['cnn_layers']):
self.l1.append(nn.Conv1d(in_channels=config['cnn_channels'], out_channels=config['cnn_channels'],
kernel_size=(config['kernel_size'],), stride=(1,),
padding=(int((config['kernel_size'] - 1) / 2),)))
self.l1.append(nn.ELU())
self.l1.append(nn.Dropout(p=config['dropout'], inplace=False))
self.l1.append(nn.Flatten())
# second cnn layers for diamino
self.l2 = nn.ModuleList()
self.l2.append(
nn.Conv1d(in_channels=7, out_channels=config['cnn2_channels'], kernel_size=(config['kernel2_size'],),
stride=(1,), padding=(int((config['kernel2_size'] - 1) / 2),)))
self.l2.append(nn.ELU())
for layer in range(config['cnn2_layers']):
self.l2.append(nn.Conv1d(in_channels=config['cnn2_channels'], out_channels=config['cnn2_channels'],
kernel_size=(config['kernel2_size'],), stride=(1,),
padding=(int((config['kernel2_size'] - 1) / 2),)))
self.l2.append(nn.ELU())
self.l2.append(nn.Dropout(p=config['dropout'], inplace=False))
self.l2.append(nn.Flatten())
# third cnn layers for atoms
self.l3 = nn.ModuleList()
self.l3.append(
nn.Conv1d(in_channels=6, out_channels=config['cnn3_channels'], kernel_size=(config['kernel3_size'],),
stride=(1,), padding=(int((config['kernel3_size'] - 1) / 2),)))
self.l3.append(nn.ELU())
for layer in range(config['cnn3_layers']):
self.l3.append(nn.Conv1d(in_channels=config['cnn3_channels'], out_channels=config['cnn3_channels'],
kernel_size=(config['kernel3_size'],), stride=(1,),
padding=(int((config['kernel3_size'] - 1) / 2),)))
self.l3.append(nn.ELU())
self.l3.append(nn.Dropout(p=config['dropout'], inplace=False))
self.l3.append(nn.Flatten())
# first fc layer for generale features
self.l4 = nn.ModuleList()
self.l4.append(nn.Linear(in_features=self.x_shape[2], out_features=config['fc_out']))
self.l4.append(nn.ReLU())
for layer in range(config['fc_layers']):
self.l4.append(nn.Linear(in_features=config['fc_out'], out_features=config['fc_out']))
self.l4.append(nn.ReLU())
self.l4.append(nn.Flatten())
# fourth cnn layer for one hot encoder
self.l5 = nn.ModuleList()
self.l5.append(
nn.Conv1d(in_channels=20, out_channels=config['cnn4_channels'], kernel_size=(config['kernel4_size'],),
stride=(1,), padding=(int((config['kernel4_size'] - 1) / 2),)))
self.l5.append(nn.ELU())
self.l5.append(nn.Dropout(p=config['dropout'], inplace=False))
for layer in range(config['cnn4_layers']):
self.l5.append(nn.Conv1d(in_channels=config['cnn4_channels'], out_channels=config['cnn4_channels'],
kernel_size=(config['kernel4_size'],), stride=(1,),
padding=(int((config['kernel4_size'] - 1) / 2),)))
self.l5.append(nn.ELU())
self.l5.append(nn.Dropout(p=config['dropout'], inplace=False))
self.l5.append(nn.Flatten())
# final FC layer for concatenating all layers
self.l6 = nn.ModuleList()
self.l6.append(nn.Linear(in_features=(
((config['cnn_channels']) + config['cnn3_channels'] + config['cnn4_channels']) * self.x_shape[2] +
config['fc_out'] * 7 + config['cnn2_channels'] * int(self.x_shape[2] / 2)),
out_features=int(config['fc2_out'])))
self.l6.append(nn.ELU())
for layer in range(config['fc2_layers']):
self.l6.append(nn.Linear(in_features=config['fc2_out'], out_features=config['fc2_out']))
self.l6.append(nn.ELU())
self.l6.append(nn.Linear(in_features=config['fc2_out'], out_features=int(config['fc2_out'])))
self.l6.append(nn.ReLU())
self.l6.append(nn.Linear(in_features=int(config['fc2_out']), out_features=int(config['fc2_out'])))
self.l6.append(nn.ReLU())
self.l6.append(nn.Linear(in_features=int(config['fc2_out']), out_features=1))
for m in self.modules():
if isinstance(m, nn.Conv1d):
init.kaiming_uniform_(m.weight, nonlinearity='leaky_relu')
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.kaiming_uniform_(m.weight, nonlinearity='leaky_relu')
init.constant_(m.bias, 0)
def forward(self, x):
x1 = x[:, :1, :]
x2 = x[:, 1:8, :int(self.x_shape[2] / 2)]
x3 = x[:, 8:14, :]
x4 = x[:, 14:21, :]
x5 = x[:, 21:, :]
for layer in self.l1:
x1 = layer(x1)
for layer in self.l2:
x2 = layer(x2)
for layer in self.l3:
x3 = layer(x3)
for layer in self.l4:
x4 = layer(x4)
for layer in self.l5:
x5 = layer(x5)
x6 = cat((x1, x2, x3, x4, x5), 1)
for layer in self.l6:
x6 = layer(x6)
return x6