-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
63 lines (50 loc) · 1.98 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import torch
from torch import nn, optim
from torch.cuda.amp import GradScaler
from torch.utils.data import DataLoader
from copy import deepcopy
from typing import Tuple
import numpy as np
def train(
model: nn.Module,
dataloader: DataLoader,
loss_fn: nn.Module,
optimizer: optim.Optimizer,
epoch: int,
device: torch.device,
clip_value: float = 0.25
) -> float:
"""
Train the model for one epoch
:param model: The model to be trained.
:param dataloader: The DataLoader providing the training data.
:param loss_fn: The loss function to use.
:param optimizer: The optimizer to use.
:param epoch: The current epoch number for logging.
:param device: The device to train on (GPU or CPU).
:param clip_value: Gradient clipping value (default: 0.0).
:return:The average loss for the epoch.
"""
current_loss = 0.0
model.train()
optimizer.zero_grad(set_to_none=True)
scaler = GradScaler()
torch.backends.cudnn.benchmark = True
for idx, (inputs, targets) in enumerate(dataloader):
if device.type == 'cuda':
inputs, targets = inputs.to(device, non_blocking=True), targets.to(device, non_blocking=True)
outputs = model(inputs.float())
loss = loss_fn(outputs, targets.float().view(-1, 1))
scaler.scale(loss).backward()
if clip_value > 0.0:
torch.nn.utils.clip_grad_norm_(model.parameters(), clip_value)
if (idx + 1) % 2 == 0 or (idx + 1) == len(dataloader):
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
current_loss += loss.item() * inputs.size(0)
if idx % 100 == 0:
correlation = np.corrcoef(outputs.cpu().detach().numpy().flat, targets.cpu())
print(f"Epoch: {epoch}, Batch: {idx}, Loss: {loss.item():.4f}, Correlation: {correlation.min().item():.4f}")
avg_loss = current_loss / len(dataloader.dataset)
return avg_loss