forked from commaai/openpilot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathradard.py
executable file
·322 lines (254 loc) · 11.1 KB
/
radard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
#!/usr/bin/env python3
import importlib
import math
from collections import deque
from typing import Any
import capnp
from cereal import messaging, log, car
from openpilot.common.numpy_fast import interp
from openpilot.common.params import Params
from openpilot.common.realtime import DT_CTRL, Ratekeeper, Priority, config_realtime_process
from openpilot.common.swaglog import cloudlog
from openpilot.common.simple_kalman import KF1D
from openpilot.selfdrive.pandad import can_capnp_to_list
# Default lead acceleration decay set to 50% at 1s
_LEAD_ACCEL_TAU = 1.5
# radar tracks
SPEED, ACCEL = 0, 1 # Kalman filter states enum
# stationary qualification parameters
V_EGO_STATIONARY = 4. # no stationary object flag below this speed
RADAR_TO_CENTER = 2.7 # (deprecated) RADAR is ~ 2.7m ahead from center of car
RADAR_TO_CAMERA = 1.52 # RADAR is ~ 1.5m ahead from center of mesh frame
class KalmanParams:
def __init__(self, dt: float):
# Lead Kalman Filter params, calculating K from A, C, Q, R requires the control library.
# hardcoding a lookup table to compute K for values of radar_ts between 0.01s and 0.2s
assert dt > .01 and dt < .2, "Radar time step must be between .01s and 0.2s"
self.A = [[1.0, dt], [0.0, 1.0]]
self.C = [1.0, 0.0]
#Q = np.matrix([[10., 0.0], [0.0, 100.]])
#R = 1e3
#K = np.matrix([[ 0.05705578], [ 0.03073241]])
dts = [i * 0.01 for i in range(1, 21)]
K0 = [0.12287673, 0.14556536, 0.16522756, 0.18281627, 0.1988689, 0.21372394,
0.22761098, 0.24069424, 0.253096, 0.26491023, 0.27621103, 0.28705801,
0.29750003, 0.30757767, 0.31732515, 0.32677158, 0.33594201, 0.34485814,
0.35353899, 0.36200124]
K1 = [0.29666309, 0.29330885, 0.29042818, 0.28787125, 0.28555364, 0.28342219,
0.28144091, 0.27958406, 0.27783249, 0.27617149, 0.27458948, 0.27307714,
0.27162685, 0.27023228, 0.26888809, 0.26758976, 0.26633338, 0.26511557,
0.26393339, 0.26278425]
self.K = [[interp(dt, dts, K0)], [interp(dt, dts, K1)]]
class Track:
def __init__(self, identifier: int, v_lead: float, kalman_params: KalmanParams):
self.identifier = identifier
self.cnt = 0
self.aLeadTau = _LEAD_ACCEL_TAU
self.K_A = kalman_params.A
self.K_C = kalman_params.C
self.K_K = kalman_params.K
self.kf = KF1D([[v_lead], [0.0]], self.K_A, self.K_C, self.K_K)
def update(self, d_rel: float, y_rel: float, v_rel: float, v_lead: float, measured: float):
# relative values, copy
self.dRel = d_rel # LONG_DIST
self.yRel = y_rel # -LAT_DIST
self.vRel = v_rel # REL_SPEED
self.vLead = v_lead
self.measured = measured # measured or estimate
# computed velocity and accelerations
if self.cnt > 0:
self.kf.update(self.vLead)
self.vLeadK = float(self.kf.x[SPEED][0])
self.aLeadK = float(self.kf.x[ACCEL][0])
# Learn if constant acceleration
if abs(self.aLeadK) < 0.5:
self.aLeadTau = _LEAD_ACCEL_TAU
else:
self.aLeadTau *= 0.9
self.cnt += 1
def get_key_for_cluster(self):
# Weigh y higher since radar is inaccurate in this dimension
return [self.dRel, self.yRel*2, self.vRel]
def reset_a_lead(self, aLeadK: float, aLeadTau: float):
self.kf = KF1D([[self.vLead], [aLeadK]], self.K_A, self.K_C, self.K_K)
self.aLeadK = aLeadK
self.aLeadTau = aLeadTau
def get_RadarState(self, model_prob: float = 0.0):
return {
"dRel": float(self.dRel),
"yRel": float(self.yRel),
"vRel": float(self.vRel),
"vLead": float(self.vLead),
"vLeadK": float(self.vLeadK),
"aLeadK": float(self.aLeadK),
"aLeadTau": float(self.aLeadTau),
"status": True,
"fcw": self.is_potential_fcw(model_prob),
"modelProb": model_prob,
"radar": True,
"radarTrackId": self.identifier,
}
def potential_low_speed_lead(self, v_ego: float):
# stop for stuff in front of you and low speed, even without model confirmation
# Radar points closer than 0.75, are almost always glitches on toyota radars
return abs(self.yRel) < 1.0 and (v_ego < V_EGO_STATIONARY) and (0.75 < self.dRel < 25)
def is_potential_fcw(self, model_prob: float):
return model_prob > .9
def __str__(self):
ret = f"x: {self.dRel:4.1f} y: {self.yRel:4.1f} v: {self.vRel:4.1f} a: {self.aLeadK:4.1f}"
return ret
def laplacian_pdf(x: float, mu: float, b: float):
b = max(b, 1e-4)
return math.exp(-abs(x-mu)/b)
def match_vision_to_track(v_ego: float, lead: capnp._DynamicStructReader, tracks: dict[int, Track]):
offset_vision_dist = lead.x[0] - RADAR_TO_CAMERA
def prob(c):
prob_d = laplacian_pdf(c.dRel, offset_vision_dist, lead.xStd[0])
prob_y = laplacian_pdf(c.yRel, -lead.y[0], lead.yStd[0])
prob_v = laplacian_pdf(c.vRel + v_ego, lead.v[0], lead.vStd[0])
# This isn't exactly right, but it's a good heuristic
return prob_d * prob_y * prob_v
track = max(tracks.values(), key=prob)
# if no 'sane' match is found return -1
# stationary radar points can be false positives
dist_sane = abs(track.dRel - offset_vision_dist) < max([(offset_vision_dist)*.25, 5.0])
vel_sane = (abs(track.vRel + v_ego - lead.v[0]) < 10) or (v_ego + track.vRel > 3)
if dist_sane and vel_sane:
return track
else:
return None
def get_RadarState_from_vision(lead_msg: capnp._DynamicStructReader, v_ego: float, model_v_ego: float):
lead_v_rel_pred = lead_msg.v[0] - model_v_ego
return {
"dRel": float(lead_msg.x[0] - RADAR_TO_CAMERA),
"yRel": float(-lead_msg.y[0]),
"vRel": float(lead_v_rel_pred),
"vLead": float(v_ego + lead_v_rel_pred),
"vLeadK": float(v_ego + lead_v_rel_pred),
"aLeadK": 0.0,
"aLeadTau": 0.3,
"fcw": False,
"modelProb": float(lead_msg.prob),
"status": True,
"radar": False,
"radarTrackId": -1,
}
def get_lead(v_ego: float, ready: bool, tracks: dict[int, Track], lead_msg: capnp._DynamicStructReader,
model_v_ego: float, low_speed_override: bool = True) -> dict[str, Any]:
# Determine leads, this is where the essential logic happens
if len(tracks) > 0 and ready and lead_msg.prob > .5:
track = match_vision_to_track(v_ego, lead_msg, tracks)
else:
track = None
lead_dict = {'status': False}
if track is not None:
lead_dict = track.get_RadarState(lead_msg.prob)
elif (track is None) and ready and (lead_msg.prob > .5):
lead_dict = get_RadarState_from_vision(lead_msg, v_ego, model_v_ego)
if low_speed_override:
low_speed_tracks = [c for c in tracks.values() if c.potential_low_speed_lead(v_ego)]
if len(low_speed_tracks) > 0:
closest_track = min(low_speed_tracks, key=lambda c: c.dRel)
# Only choose new track if it is actually closer than the previous one
if (not lead_dict['status']) or (closest_track.dRel < lead_dict['dRel']):
lead_dict = closest_track.get_RadarState()
return lead_dict
class RadarD:
def __init__(self, radar_ts: float, delay: int = 0):
self.current_time = 0.0
self.tracks: dict[int, Track] = {}
self.kalman_params = KalmanParams(radar_ts)
self.v_ego = 0.0
self.v_ego_hist = deque([0.0], maxlen=delay+1)
self.last_v_ego_frame = -1
self.radar_state: capnp._DynamicStructBuilder | None = None
self.radar_state_valid = False
self.ready = False
def update(self, sm: messaging.SubMaster, rr):
self.ready = sm.seen['modelV2']
self.current_time = 1e-9*max(sm.logMonoTime.values())
radar_points = []
radar_errors = []
if rr is not None:
radar_points = rr.points
radar_errors = rr.errors
if sm.recv_frame['carState'] != self.last_v_ego_frame:
self.v_ego = sm['carState'].vEgo
self.v_ego_hist.append(self.v_ego)
self.last_v_ego_frame = sm.recv_frame['carState']
ar_pts = {}
for pt in radar_points:
ar_pts[pt.trackId] = [pt.dRel, pt.yRel, pt.vRel, pt.measured]
# *** remove missing points from meta data ***
for ids in list(self.tracks.keys()):
if ids not in ar_pts:
self.tracks.pop(ids, None)
# *** compute the tracks ***
for ids in ar_pts:
rpt = ar_pts[ids]
# align v_ego by a fixed time to align it with the radar measurement
v_lead = rpt[2] + self.v_ego_hist[0]
# create the track if it doesn't exist or it's a new track
if ids not in self.tracks:
self.tracks[ids] = Track(ids, v_lead, self.kalman_params)
self.tracks[ids].update(rpt[0], rpt[1], rpt[2], v_lead, rpt[3])
# *** publish radarState ***
self.radar_state_valid = sm.all_checks() and len(radar_errors) == 0
self.radar_state = log.RadarState.new_message()
self.radar_state.mdMonoTime = sm.logMonoTime['modelV2']
self.radar_state.radarErrors = list(radar_errors)
self.radar_state.carStateMonoTime = sm.logMonoTime['carState']
if len(sm['modelV2'].temporalPose.trans):
model_v_ego = sm['modelV2'].temporalPose.trans[0]
else:
model_v_ego = self.v_ego
leads_v3 = sm['modelV2'].leadsV3
if len(leads_v3) > 1:
self.radar_state.leadOne = get_lead(self.v_ego, self.ready, self.tracks, leads_v3[0], model_v_ego, low_speed_override=True)
self.radar_state.leadTwo = get_lead(self.v_ego, self.ready, self.tracks, leads_v3[1], model_v_ego, low_speed_override=False)
def publish(self, pm: messaging.PubMaster, lag_ms: float):
assert self.radar_state is not None
radar_msg = messaging.new_message("radarState")
radar_msg.valid = self.radar_state_valid
radar_msg.radarState = self.radar_state
radar_msg.radarState.cumLagMs = lag_ms
pm.send("radarState", radar_msg)
# publish tracks for UI debugging (keep last)
tracks_msg = messaging.new_message('liveTracks', len(self.tracks))
tracks_msg.valid = self.radar_state_valid
for index, tid in enumerate(sorted(self.tracks.keys())):
tracks_msg.liveTracks[index] = {
"trackId": tid,
"dRel": float(self.tracks[tid].dRel),
"yRel": float(self.tracks[tid].yRel),
"vRel": float(self.tracks[tid].vRel),
}
pm.send('liveTracks', tracks_msg)
# fuses camera and radar data for best lead detection
def main():
config_realtime_process(5, Priority.CTRL_LOW)
# wait for stats about the car to come in from controls
cloudlog.info("radard is waiting for CarParams")
CP = messaging.log_from_bytes(Params().get("CarParams", block=True), car.CarParams)
cloudlog.info("radard got CarParams")
# import the radar from the fingerprint
cloudlog.info("radard is importing %s", CP.carName)
RadarInterface = importlib.import_module(f'selfdrive.car.{CP.carName}.radar_interface').RadarInterface
# *** setup messaging
can_sock = messaging.sub_sock('can')
sm = messaging.SubMaster(['modelV2', 'carState'], frequency=int(1./DT_CTRL))
pm = messaging.PubMaster(['radarState', 'liveTracks'])
RI = RadarInterface(CP)
rk = Ratekeeper(1.0 / CP.radarTimeStep, print_delay_threshold=None)
RD = RadarD(CP.radarTimeStep, RI.delay)
while 1:
can_strings = messaging.drain_sock_raw(can_sock, wait_for_one=True)
rr = RI.update(can_capnp_to_list(can_strings))
sm.update(0)
if rr is None:
continue
RD.update(sm, rr)
RD.publish(pm, -rk.remaining*1000.0)
rk.monitor_time()
if __name__ == "__main__":
main()