-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAppendix.tex
1858 lines (1746 loc) · 120 KB
/
Appendix.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\appendix
\subsection{Protocols}\label{app:protocolboxes}
In the protocol listings (Figures \ref{fig:quadcheck} -- \ref{fig:distquadcheck}), {$\mathsf{pp}$ denotes the public parameters consisting of:
{\small$\mathsf{pp} = (\FF, \GG, \rsc{\eta}{n,\ell}, \rsc{\alpha}{h,m},\rsc{\eta}{n,s+\ell-1},\rsc{\eta}{n,2\ell-1}, \rsc{\alpha}{h,2m-1}, \bm{g},h)$}
%Linear Check of Graphene
\begin{comment}
\begin{figure}[h!]
{\footnotesize
%\centering
\begin{framed}
\noindent{$\linearcheck(\mathsf{pp},A\in \mc{M}_{M,N},b\in \FF^M,[\pi];\ewit)$}: %\pnote{why $\wit$ is not part of the witness of linear check protocol?}
\noindent{\bf Relation}: $\ewit=\open(\pi)\wedge A\wit=b$ for $\wit=\dec(\ewit)$.
\begin{enumerate}[{\rm 1.}]
\item $\verifier\rightarrow\prover$: $\rho\sample \FF^p$.
\item $\prover$ computes: $=\sum_{i\in [p]}\rho_i\ewit[i,\cdot,\cdot]$,
commitments $\tilde{c}_1,\ldots,\tilde{c}_\ell$ as in Section ~\ref{sec:matrixcommitment}.
\item $\prover\rightarrow\verifier$: $\tilde{\bm{c}}=(\tilde{c}_1,\ldots,\tilde{c}_\ell)$.
\item $\verifier\rightarrow\prover$: $r\sample \FF^M$.
\item $\prover\leftrightarrow\verifier$ compute: Polynomials $R^i$, $i\in [p]$ interpolating $R=r^TA$
as in Section ~\ref{sec:lincheck}.
\item $\prover$ computes: Matrix $P$ from $R$ and $\ewit$ as described in Section ~\ref{sec:lincheck}. Samples $P_0\sample \FF^{2m-1}$, $\omega_0\sample \FF$ and $c_0\gets \comm(P_0,\omega_0)$.
Computes commitments $c_1,\ldots,c_{s+\ell-1}$ from $P$.
\item $\prover\rightarrow\verifier$: $c_0,c_1,\ldots,c_{s+\ell-1}$.
\item $\verifier\rightarrow\prover$: $Q=\{(j_u,k_u):u\in [t]\}$ for $(j_u,k_u)\sample [h]\times [n]$ for $u\in [t]$.
\item $\verifier\rightarrow\pi$: $\{k_u:u\in [t]\}$.
\item $\prover\rightarrow\verifier$: $\ewit[\cdot,j_u,k_u]$ for $u\in [t]$.
\item $\pi\rightarrow\verifier$: $\pi[\cdot,k_u]$ for $u\in [t]$.
\item $\verifier\rightarrow\prover$: $\delta\sample \FF^p$, $\beta\sample \FF\backslash \{0\}$.
\item $\prover$ and $\verifier$ run inner product arguments to check:
\begin{enumerate}
\item $\innerproduct(\mathsf{pp},\bm{1}_{j_u}^T\Lambda_{h,2m-1},\mathsf{cm}_{k_u},v_u;\overline{P}[\cdot,k_u])$
for $u\in [t]$ where $\mathsf{cm}_{k_u}=\prod_{a=1}^{s+\ell-1}c_a^{\Lambda^T_{n,s+\ell-1}[a,k_u]}$,
$v_u=\sum_{i=1}^pR^i(\alpha_{j_u},\eta_{k_u})U[i,j_u,k_u]$ (check consistency of $P$ with $\pi$).
\item $\innerproduct(\mathsf{pp},1^m||0^{m-1},\mathsf{cm},r^Tb;z)$ where $z=\beta P_0+\overline{P}\varphi$ and $\mathsf{cm}=c_0^{\beta}\cdot \prod_{a=1}^{s+\ell-1}c_k^{\varphi_k}$ (check the condition $r^TAw=r^Tb$).
\item $\innerproduct(\mathsf{pp},\bm{1}_{j_u}^T\Lambda_{h,m},C_u,\innp{\delta}{X_u})$ for $u\in [t]$
where $C_u=\prod_{i=1}^p(\pi[i,k_u])^{\delta_i}$ (consistency of $X_u$ with $\pi$).
\end{enumerate}
\item $\verifier$ checks: $\prod_{a=1}^\ell(\tilde{c}_a)^{\Lambda^T_{n,\ell}[a,k_u]}=\prod_{i=1}^p(\pi[i,k_u])^{\rho_i}$ for $u\in [t]$ (check proximity of $\ewit$ to $\mc{W}_1$).
\item $\verifier$ accepts if all the checks succeed.
\end{enumerate}
\end{framed}
\caption{Linear Check Protocol}
\label{fig:linearcheck}
}
\end{figure}
\end{comment}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Quadratic Check of Graphene
\begin{figure}[h!]
{\footnotesize
%\centering
\begin{framed}
\noindent{$\quadcheck(\mathsf{pp},[\pi_x],[\pi_y],[\pi_z];\ewit_x, \ewit_y, \ewit_z)$}:
\noindent{\bf Relation}: $\ewit_a=\open(\pi_a)$ for $a\in \{x,y,z\}$,
$\wit_x \circ \wit_y = \wit_z$ where $\wit_a=\dec(\ewit_a)$ for $a\in \{x,y,z\}$.
\begin{enumerate}[{\rm 1.}]
\item $\verifier\rightarrow\prover$: $\rho\sample \FF^{3p}$.
\item $\prover$ computes: (a) $\tilde{\ewit}=\sum_{i=1}^p[\rho_i\ewit_x[i,\cdot,\cdot]+
\rho_{p+i}\ewit_y[i,\cdot,\cdot]+\rho_{2p+i}\ewit_z[i,\cdot,\cdot]]$, (b)
commitments $\tilde{c}_1,\ldots,\tilde{c}_\ell$ as $\tilde{c}_k = \prod_{i=1}^{p} (\pi_x[i,k])^{\rho_i}\cdot (\pi_y[i,k])^{\rho_{p+i}}\cdot(\pi_z[i,k])^{\rho_{2p+i}}$ $\forall k\in[\ell]$.
\item $\prover\rightarrow\verifier$: $\tilde{\bm{c}}=(\tilde{c}_1,\ldots,\tilde{c}_\ell)$.
\item $\verifier\rightarrow\prover$: $r\sample \FF^p$.
%\item $\prover\leftrightarrow\verifier$ compute: Polynomials $R^i$, $i\in [p]$ interpolating $R=r^TA$ as in Section ~\ref{sec:quadcheck}.
\item $\prover$ computes: (a) $p_j(\cdot) = \sum_{i\in[p]} r_i[Q^i_x(\alpha_j,\cdot)Q^i_y(\alpha_j,\cdot) - Q^i_z(\alpha_j,\cdot)]$ $\forall j\in [h]$
(b) matrix $P$ such that $P[j,k] = p_j(\eta_k)$ as described in Section ~\ref{sec:quadcheck}, (c)
computes commitments $c_1,\ldots,c_{2\ell}$ from $P$. $\prover$ also
samples $P_0\sample \FF^{2m-1}$ with $P_0[j]=0^m$ for $j\in[m]$ and computes commitment $c_0$
to $P_0$.
\item $\prover\rightarrow\verifier$: $c_0$, $c_1,\ldots,c_{2\ell-1}$.
\item $\verifier\rightarrow\prover$: $Q=\{(j_u,k_u):u\in [t]\}$ for $Q\sample [h]\times [n]$, $u\in [t]$ and $\tau \sample \FF^s$, $\gamma \sample \FF^m$.
\item $\verifier\rightarrow\pi$: $\{k_u:u\in [t]\}$.
\item $\prover\rightarrow\verifier$: $X_u=\ewit_x[\cdot,j_u,k_u]$ , $Y_u=\ewit_y[\cdot,j_u,k_u]$ and $Z_u=\ewit_z[\cdot,j_u,k_u]$ for $u\in [t]$.
\item $\pi\rightarrow\verifier$: $\pi[\cdot,k_u]$ for $u\in [t]$.
\item $\verifier\rightarrow\prover$: $\delta\sample
\FF^p$, $\beta_x\sample \FF$, $\beta_y\sample \FF$, $\beta_z\sample \FF$,
$\beta\sample \FF\backslash \{0\}$.
\item $\prover$ computes:
$V_u=\sum_{i=1}^p\delta_i\big(\beta_x\ewit_x[i,\cdot,k_u]+\beta_y\ewit_y[i,\cdot,k_u]+\beta_z\ewit[i,\cdot,k_u]\big)$.
%$\beta \FF\backslash \{0\}$.
\item $\prover \text{ and }\verifier$ compute:
$W_u=\beta_xX_u+\beta_yY_u+\beta_zZ_u$ for $u\in [t]$.
$T_u=(C_u)^{\beta_x}\cdot(D_u)^{\beta_y}\cdot(E_u)^{\beta_z}$, for $u\in [t]$ where
$C_u=\prod_{i=1}^{p}(\pi_x[i,k_u])^{\delta_i}$, $D_u=\prod_{i=1}^{p}(\pi_y[i,k_u])^{\delta_i}$
and $E_u=\prod_{i=1}^{p}(\pi_y[i,k_u])^{\delta_i}$.
\item $\prover$ and $\verifier$ run inner-product arguments to check:
\begin{enumerate}
\item $\innerproduct(\mathsf{pp},\bm{1}_{j_u}^T\Lambda_{h,2m-1},\mathsf{cm}_{k_u},v_u;\overline{P}[\cdot,k_u])$ for $u\in [t]$ where $\mathsf{cm}_{k_u}=\prod_{a=1}^{2\ell-1}(c_a)^{\Lambda_{n,2\ell-1}^T[a,k_u]}$,
$v_u=\sum_{i=1}^p r_i[X_u[i]\cdot Y_u[i] - Z_u[i]]$ (check consistency of $P$ with $\pi$).
\item $\innerproduct(\mathsf{pp},\gamma||0^{m-1},\mathsf{cm},0;z)$
where $z=\beta P_0 +\overline{P}\varphi$, $\varphi = \Phi^T\tau$ and
$\mathsf{cm} = (c_0)^{\beta}\cdot\prod_{a=1}^{2\ell-1} (c_a)^{\varphi_a}$ %(check the condition $r^TAw = r^Tb$).
\item
$\innerproduct(\mathsf{pp},\bm{1}_{j_u}^T\Lambda_{h,m},T_u,w_u;\overline{V}_u])$, where $\overline{V}_u$ stands for first $m$ entries of $V_u$ and $w_u = \innp{\delta}{W_u}$ (consistency of $X_u, Y_u, Z_u$ with $\pi$).
\end{enumerate}
\item $\verifier$ checks proximity of $\ewit_x,\ewit_y$
and $\ewit_z$ according to Eqn \eqref{eq:combinedproximity}.
\item $\verifier$ accepts if all the checks succeed.
\end{enumerate}
\end{framed}
\caption{Quadratic Check Protocol}
\label{fig:quadcheck}
}
\end{figure}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Distributed Linear Check of DP-Graphene
\begin{figure}[h]
{\footnotesize
%\centering
\begin{framed}
\noindent{$\distlinearcheck(\mathsf{pp}, \, A\in \mc{M}_{M,N}, \, b\in \FF^M, \, [\pi];\, \shr{\ewit}, \, \shr{0^{2m-1}})$}:
%\pnote{why $\wit$ is not part of the witness of linear check protocol?}
\noindent{\bf Relation}: $\ewit=\open(\pi)\wedge A\wit=b$ for $\shr{\wit}=\dec(\shr{\ewit})$ for all $\xi \in [\Num]$ and $\sum_{\xi\in[\Num]} \shr{\wit} = \wit$.
\begin{enumerate}[{\rm 1.}]
\item $\verifier\rightarrow\distprover$: $\rho\sample \FF^p$.
\item $\distprover$ computes: $\shr{\tilde{\ewit}} = \sum_{i\in [p]}\rho_i\shr{\ewit}[i,\cdot,\cdot]$,
commitments $\shr{\tilde{c}_1},\ldots,\shr{\tilde{c}_\ell}$ as $\shr{\tilde{c}}_k = \prod_{i\in[p]}(\shr{\comoracle[i,k]})^{\rho_i}$ $\forall k\in[\ell]$
\item $\distprover\rightarrow\Ag$: $\shr{\tilde{\bm{c}}} = (\shr{\tilde{c}_1},\ldots,\shr{\tilde{c}_\ell})$.
\item {$\Ag\rightarrow\verifier$: $\tilde{\bm{c}}=\combine(\shr{\tilde{\bm{c}}}$.} %(\tilde{c}_1,\ldots,\tilde{c}_\ell)$.
\item $\verifier\rightarrow\distprover$: $r\sample \FF^M$.
\item $\distprover \text{ and }\verifier$ compute: Polynomials $R^i$, $i\in [p]$ interpolating $R=r^TA$
as in Section ~\ref{sec:lincheck}.
\item $\distprover$ computes: Matrix $\shr{P}$ from $R$ and $\shr{\ewit}$ as described in Section ~\ref{sec:lincheck}. Samples $\shr{P_0}\sample \FF^{2m-1}$, $\shr{\omega_0} \sample \FF$ and $\shr{c_0}\gets \comm(\shr{P_0},\shr{\omega_0})$, and $\shr{d_0}\gets \comm(\shr{0^{2m-1}},\shr{o})$ where $\shr{o} \sample \FF$.
Computes commitments $\shr{c_1},\ldots,\shr{c_{s+\ell-1}}$ from $\shr{P}$.
\item $\distprover\rightarrow\Ag$: $\shr{c_0} ,\shr{c_1} ,\ldots, \shr{c_{s+\ell-1}}, \shr{d_0}$.
\item {$\Ag\rightarrow\verifier$: $c_k = \combine(\shr{c_k}) \, \forall k\in [s+\ell-1]$ and sends $c_0,c_1,\ldots,c_{s+\ell-1}$.}
\item $\verifier\rightarrow\distprover$: $Q=\{(j_u,k_u):u\in [t]\}$ for %$(j_u,k_u)
$Q\sample [h]\times [n]$ for $u\in [t]$.
\item $\verifier\rightarrow\pi$: $\{k_u:u\in [t]\}$.
\item $\distprover\rightarrow\Ag$: $\shr{X_u}=\shr{\ewit}[\cdot,j_u,k_u], \shr{P_u} = \shr{P}[\cdot,k_u]$ for $u\in [t]$.
\item {$\Ag\rightarrow\verifier$: $X_u = \sum_{\xi\in[\Num]} \shr{X_u}, P_u= \sum_{\xi\in [\Num]} \shr{P_u}$ and sends ${X_u}$ for $u\in [t]$.}
\item $\pi\rightarrow\verifier$: $\pi[\cdot,k_u]$ for $u\in [t]$.
\item $\verifier\rightarrow\distprover$: $\delta\sample \FF^p$, $\beta\sample \FF\backslash \{0\}$.
\item $\distprover\rightarrow\Ag$: $\shr{z} = \beta\shr{P_0} + \shr{\overline{P}}\varphi + \shr{0^{2m-1}}$, $\shr{V_u} = \sum_{i\in[p]} \delta_i \shr{\ewit}[i,\cdot,k_u]$ and sends $\shr{z}$, $\shr{V_u}$.
\item {$\Ag$ computes $z=\sum_{\xi\in[\Num]} \shr{z}$, $V_u=\sum_{\xi\in[\Num]} \shr{V_u}$}.
\item $\Ag$ and $\verifier$ run inner product arguments to check:
\begin{enumerate}
\item $\innerproduct(\mathsf{pp},\bm{1}_{j_u}^T\Lambda_{h,2m-1},\mathsf{cm}_u,v_u;\overline{P}[\cdot,k_u])$
%\pnote{We can use $P[1:2m, k_u]$ to denote the first 2m entries of $P[\cdot,k_u]$ as $\overline{P}$ is the submatrix after cropping both the directions, $h$ and $n$.}
for $u\in [t]$ where $\mathsf{cm}_u=\prod_{a=1}^{s+\ell-1}(c_a)^{\Lambda_{n,s+\ell-1}[a,k_u]}$,
$v_u=\sum_{i=1}^pR^i(\alpha_{j_u},\eta_{k_u})X_u[i]$ (check consistency of $P$ with $\pi$).
\item $\innerproduct(\mathsf{pp},1^m||0^{m-1},\mathsf{cm},r^Tb;z)$ where $z=\beta P_0+\overline{P}\varphi$ and $\mathsf{cm}= (c_0)^{\beta}\cdot\prod_{a=1}^{s+\ell-1}(c_a)^{\varphi_a}$ (check the condition $r^TAw=r^Tb$).
\item $\innerproduct(\mathsf{pp},\bm{1}_{j_u}^T\Lambda_{h,m},C_u,w_u;V_u)$ for $u\in [t]$
where $C_u=\prod_{i=1}^p(\pi[i,k_u])^{\delta_i}$ and $w_u= \sum_{i\in[p]} \delta_i X_u[i]$(consistency of $X_u$ with $\pi$).
\end{enumerate}
\item $\verifier$ checks: $\prod_{a=1}^\ell(\tilde{c}_a)^{\Lambda^T_{n,\ell}[a,k_u]}=\prod_{i=1}^p(\pi[i,k_u])^{\rho_i}$ for $u\in [t]$ (check proximity of $\ewit$ to $\mc{W}_1$).
\end{enumerate}
\end{framed}
\caption{Distributed Linear Check Protocol}
\label{fig:distlincheck}
}
\end{figure}
%%%%%%%%%%%%%%%%%%%%%%%%%%
%Distributed Quadratic Check of DP-Graphene
\begin{figure}[h]
{\footnotesize
%\centering
\begin{framed}
\noindent{$\distquadcheck(\mathsf{pp}, [\pi_x], [\pi_y], [\pi_z];\, \shr{\ewit_x}, \shr{\ewit_y}, \shr{\ewit_z}\, \shr{0^{2m}})$}:
%\pnote{why $\wit$ is not part of the witness of linear check protocol?}
\noindent{\bf Relation}: $[\ewit_x||\ewit_y||\ewit_z]=\open(\pi)\wedge \wit_x \circ \wit_y = \wit_z$ for $\shr{\wit_a}=\dec(\shr{\ewit_a})$ for all $\xi \in [\Num]$ and $\sum_{\xi\in[\Num]} \shr{\wit_a} = \wit_a$ $\forall a\in \{x,y,z\}$.
\begin{enumerate}[{\rm 1.}]
\item $\verifier\rightarrow\distprover$: $\rho\sample \FF^{3p}$.
\item $\distprover$ computes: $\shr{\tilde{\ewit}} =\sum_{i=1}^p[\rho_i\shr{\ewit_x}[i,\cdot,\cdot]+
\rho_{p+i}\shr{\ewit_y}[i,\cdot,\cdot]+\rho_{2p+i}
\shr{\ewit_z}[i,\cdot,\cdot]]$,
commitments $\shr{\tilde{c}_1},\ldots,\shr{\tilde{c}_\ell}$ as $\shr{\tilde{c}}_k = \prod_{i=1}^{p} (\shr{\comoracle_x}[i,k])^{\rho_i}\cdot (\shr{\comoracle_y}[i,k])^{\rho_{p+i}}\cdot(\shr{\comoracle_z}[i,k])^{\rho_{2p+i}}$ $\forall k\in[\ell]$.
\item $\distprover\rightarrow\Ag$: $\shr{\tilde{\bm{c}}} = (\shr{\tilde{c}_1},\ldots,\shr{\tilde{c}_\ell})$.
\item {$\Ag\rightarrow\verifier$: $\tilde{\bm{c}}=\combine(\shr{\tilde{\bm{c}}})$.} %(\tilde{c}_1,\ldots,\tilde{c}_\ell)$.
\item $\verifier\rightarrow\distprover$: $r\sample \FF^p$.
\item Provers $\distprover$ run the MPC: $\shr{\ewit_x.\ewit_y}\leftarrow
\mathsf{Mult}(\shr{\ewit_x},\shr{\ewit_y})$ to obtain shares of the hadamard product of the encodings.
\item $\distprover$ computes: Matrix $\shr{P}$ from $r$ and $\shr{\ewit_x.\ewit_y}, \, \shr{\ewit_z}$ as described in Section ~\ref{sec:quadcheck}. Samples $\shr{P_0}\sample \FF^{2m-1}$ such that $P_0[j]=0 \forall j\in[m]$, $\shr{\omega_0} \sample \FF$ and $\shr{c_0}\gets \comm(\shr{P_0},\shr{\omega_0})$, and
$\shr{d_0}\gets \comm(\shr{0^{2m-1}},\shr{o})$ where $\shr{o} \sample \FF$.
Computes commitments $\shr{c_1},\ldots,\shr{c_{2\ell-1}}$ from $\shr{P}$.
\item $\distprover\rightarrow\Ag$: $\shr{c_0} ,\shr{c_1} ,\ldots, \shr{c_{2\ell-1}}, \shr{d_0}$.
\item {$\Ag\rightarrow\verifier$: $c_k = \combine(\shr{c_k}) \, \forall k\in [2\ell-1]$ and sends $c_0,c_1,\ldots,c_{2\ell-1}$.}
\item $\verifier\rightarrow\distprover$: $Q=\{(j_u,k_u):u\in [t]\}$ for %$(j_u,k_u)
$Q\sample [h]\times [n]$ for $u\in [t]$. And $\tau \sample \FF^s, \, \gamma \sample \FF^m, \beta\sample \FF^\ast$.
\item $\verifier\rightarrow\pi$: $\{k_u:u\in [t]\}$.
\item $\distprover\rightarrow\Ag$:
%\begin{itemize}
$\shr{X_u}=\shr{\ewit_x}[\cdot,j_u,k_u]$,
$\shr{Y_u}=\shr{\ewit_y}[\cdot,j_u,k_u]$,
$\shr{Z_u}=\shr{\ewit_z}[\cdot,j_u,k_u]$,
$\shr{P_u} = \shr{P}[\cdot,k_u]$
%\end{itemize}
for $u\in [t]$.
\item {$\Ag\rightarrow\verifier$: $A_u = \sum_{\xi\in[\Num]} \shr{A_u}$ where $A\in \{X, Y, Z, P\}$ and sends ${X_u, Y_u, Z_u}$ for $u\in [t]$.}
\item $\pi\rightarrow\verifier$: $\pi[\cdot,k_u]$ for $u\in [t]$.
\item $\verifier\rightarrow\distprover$: $\delta\sample \FF^p$, $\beta_x\sample \FF$, $\beta_y\sample \FF$, $\beta_z\sample \FF$,
$\beta\sample \FF\backslash \{0\}$.
\item $\distprover$ computes:
$\shr{V_u}=\sum_{i=1}^p\delta_i\big(\beta_x\shr{\ewit_x}[i,\cdot,k_u]+\beta_y\shr{\ewit_y}[i,\cdot,k_u]+\beta_z\shr{\ewit}[i,\cdot,k_u]\big)$ and $\shr{z} = \beta\cdot P_0 + \shr{\overline{P}}\varphi + \shr{0^{2m-1}}$.
\item $\distprover\rightarrow\Ag$: sends $\shr{z}, \shr{V_u}$.
\item {$\Ag$ computes $z=\sum_{\xi\in[\Num]} \shr{z}$} and $V_u = \sum_{\xi\in[\Num]} \shr{V_u}$.
\item $\Ag \text{ and } \verifier$: Both compute $W_u = \beta_x X_u + \beta_y Y_u + \beta_z Z_u$ for $u\in[t]$. $T_u = (C_u)^{\beta_x}\cdot(D_u)^{\beta_y}\cdot(E_u)^{\beta_z}$, for $u\in [t]$ where
$C_u=\prod_{i=1}^{p}(\pi_x[i,k_u])^{\delta_i}$, $D_u=\prod_{i=1}^{p}(\pi_y[i,k_u])^{\delta_i}$
and $E_u=\prod_{i=1}^{p}(\pi_y[i,k_u])^{\delta_i}$.
\item $\Ag$ and $\verifier$ run inner product arguments to check:
\begin{enumerate}
\item $\innerproduct(\mathsf{pp},\bm{1}_{j_u}^T\Lambda_{h,2m-1},\mathsf{cm}_{k_u},v_u;\overline{P}[\cdot,k_u])$ for $u\in [t]$ where $\mathsf{cm}_{k_u}=c_0^{\beta}\prod_{a=1}^{2\ell-1}(c_a)^{\Lambda_{n,2\ell-1}^T[a,k_u]}$,
$v_u=\sum_{i=1}^p r_i[X_u[i]\cdot Y_u[i] - Z_u[i]]$ (check consistency of $P$ with $\pi$).
\item $\innerproduct(\mathsf{pp},\gamma||0^{m-1},\mathsf{cm},0;z)$ where $z=\beta\cdot P_0 + \overline{P}\times \varphi$ and $\varphi = \Phi^T\tau$ and $\mathsf{cm} = \prod_{a=1}^{2\ell-1} (c_a)^{\varphi_a}$ %(check the condition $r^TAw = r^Tb$).
\item
$\innerproduct(\mathsf{pp},\bm{1}_{j_u}^T\Lambda_{h,m},T_u,w_u;\overline{V}_u)$, where $\overline{V}_u$ stands for first $m$ entries of $V_u$ and $w_u = \innp{\delta}{W_u}$ (consistency of $X_u, Y_u, Z_u$ with $\pi$).
\end{enumerate}
\item $\verifier$ checks proximity of $\ewit_x,\ewit_y$ and $\ewit_z$ according to the Equation \eqref{eq:combinedproximity}.
\end{enumerate}
\end{framed}
\caption{Distributed Quadratic Check Protocol}
\label{fig:distquadcheck}
}
\end{figure}
\begin{comment}
\subsection{Interleaved Codes: Alternative interpretation} \label{app:AltILC}
For concreteness, let $\FF$ be the finite field $\FF_q$, consisting of $q$
elements. Let $\HH$ denote the finite field consisting of $q^m$ elements. From
standard algebra, the field $\HH$ is specified by an irreducible polynomial $h(x)\in \FF[x]$ of
degree $m$ as follows:
\begin{itemize}
\item The elements of $\HH$ are polynomials $a(x)$ over $\FF$ of degree at most
$m-1$.
\item The field operations $(+,\cdot)$ on $\HH$ are defined as corresponding
polynomial operations modulo $h(x)$, i.e, on $\HH$ we define $a(x)+b(x) =
(a(x)+b(x)) \text{ mod } h(x)$ and $a(x)\cdot b(x) = (a(x)\cdot b(x)) \text{ mod
} h(x)$.
\end{itemize}
We can identify the elements of field $\HH$ naturally with the set $\FF^m$ via
the bijection $f:\FF^m\leftrightarrow \HH$ given by
$f(a_0,\ldots,a_{m-1})=\sum_{i=0}a_ix^i$. For any $a,b\in \FF^m$ and $\alpha\in
\FF$, it is seen that $f(a+b)=f(a)+f(b)$ and $f(\alpha a)=\alpha f(a)$. We can
extend $f$ to the bijection $\tilde{f}$ between the set $\mc{M}_{m,n}$ of $m\times n$
matrices over $\FF$ and $\HH^n$ by defining:
\begin{equation}\label{lem:bijection}
\tilde{f}(A) = \big(f(A[\cdot,1]),\ldots,f(A[\cdot,n])\big)
\end{equation}
We have the following:
\begin{lemma}[Correspondence Lemma]\label{lem:correspondence}
Let $L$ be an $[n,k,d]$ code over the field $\FF=\FF_q$, and let $\mc{C} :=
\ric{L}{m}$ be the row interleaved code of $L$. Then $\tilde{f}(\mc{C})$ is an
$[n,k,d]$ code over the field $\HH$, where $\HH=\FF_{q^m}\cong \FF^m$. Moreover,
the generator matrix $\mc{G}$ of $L$ is also the generator matrix of
$\tilde{f}(\mc{C})$. We note that in the latter case $\mc{G}$ is viewed as a
matrix over the field $\HH$.
\end{lemma}
\begin{proof}
Let $\tilde{\mc{C}}$ denote the linear code over $\HH$ given by $\tilde{\mc{C}} :=
\{\mc{G}x: x\in \HH^k\}$. Clearly, $\tilde{\mc{C}}$ is a linear code over $\HH$.
Further it can be seen that $\tilde{\mc{C}}$ is an $[n,k,\ast]$ linear code because
$\mathsf{rank}_{\FF}(\calG)=\mathsf{rank}_{\HH}(\calG)$. This is because $\calG$
contains entries from the subfield $\FF$, and so the determinant of a submatrix of $\calG$
vanishes over $\HH$ if and only if it vanishes over the subfield $\FF$. Now,
consider $A\in \mc{C}$. Then there exists $m\times k$ matrix $P$ such that for all $j\in [n]$,
we have $A[\cdot,j]=\sum_{i\in [m]}\calG[i,j]P[\cdot,i]$. Therefore, for all
$j\in [m]$, we have
\begin{align*}
f(A[\cdot,j]) &= f\big(\sum_{i=1}^m \calG[i,j]P[\cdot,i]\big) =
\sum_{i=1}^k \calG[i,j]f(P[\cdot,i]) \\
&= \sum_{i=1}^k \calG[i,j]p_i(x) \text{ where } p_i(x)=f(P[\cdot,i]).
\end{align*}
From the above, it can be seen that:
\[ \tilde{f}(A)=(f(A[\cdot,1]),\ldots,f(A[\cdot,n]))=\calG
[p_1(x),\ldots,p_k(x)]^T \]
where we view $\tilde{f}(A)$ as a column vector. Thus
$\tilde{f}(\mc{C})\subseteq \tilde{\mc{C}}$. Similarly, one can show that
$\tilde{\mc{C}}\subseteq \tilde{f}(\mc{C})$ and thus conclude
$\tilde{f}(\mc{C})=\tilde{\mc{C}}$. Using similar arguments we can also show
that the code $\tilde{f}(\mc{C})=\tilde{\mc{C}}$ also has the same parity check
matrix as the code $L$, and hence has the same minimum distance $d$. We skip the
proof as it is standard.
\end{proof}
\end{comment}
% removing proof of Lemma bicdecoding
\begin{comment}
%\subsection{Proof of Lemma~\ref{lem:bicdecoding} }\label{prooflemmaRScode}
\begin{proof}[Proof of Lemma ~\ref{lem:bicdecoding}]\label{prooflemmaRScode}
Let $U_1 \in \mc{C}_1$ such that $\dham_1(U^\ast, U_1) \leq \dham(U^\ast, U) \forall U\in \mc{C}_1$ and let $\dham_1(U^\ast, U_1) = \beta_1$ with $\beta_1<e_1$
Therefore $U^\ast$ differs from $U_1$ in $\beta_1$ many columns, i.e. in the remaining $n-\beta_1$ columns $U^\ast$ and $U_1$ are identical.
So, there are columns $S_1 = \{j_{s} : s\in [n - \beta_1] \}$ for which $U^\ast[i,j] = U_1[i,j]$ $\forall j\in S$.
Let $U_2 \in \mc{C}_2$ such that $\dham_2(U^\ast, U_2) \leq \dham(U^\ast, U) \forall U\in \mc{C}_2$ and let $\dham_1(U^\ast, U_2) = \beta_2$ with $\beta_2<e_2$
Therefore $U^\ast$ differs from $U_2$ in $\beta_2$ many rows, i.e. in the remaining $n-\beta_1$ rows $U^\ast$ and $U_2$ are identical.
So, there are rows $S_2 = \{i_{t} : t\in [h - \beta_2] \}$ for which $U^\ast[i,j] = U_2[i,j]$ $\forall i\in T$.
$U_1\in \mc{C}_1 \implies \exists$ polynomials $p_1(\cdot), \ldots, p_h(\cdot)$ of degree $< \ell$
$U_2\in \mc{C}_2 \implies \exists$ polynomials $q_1(\cdot), \ldots, q_n(\cdot)$ of degree $< m$
Such that $p_i(\eta_j) = U_1[i,j] $ and $ q_i(\alpha_j) = U_2[j,i]$
Therefore, $U_1[i,j] = U_2[i,j]$ $\forall i\in S_1, j\in S_2$. Choose a bivariate polynomial $Q(x,y)$ such that $deg_x(Q)<\ell $ and $deg_y(Q)<m$ and $Q(\eta_{i_s}, \alpha_{j_t}) = U_1[i_s,j_t] = U_2[i_s,j_t] \forall (i, j)\in S_1\times S_2$.
Defne $U = Q(\eta_i,\alpha_j)$ $\forall i\in[h], j\in[n]$, Then $U \in L_1\otimes L_2$ and $U^\ast[i,j] = U[i,j]$ $\forall (i,j) \in S_1 \times S_2$.
And $|S_1|= n-\beta_1 > n-e_1$ and $|S_2|= h-\beta_2 > h-e_2$.
This proves the above claim.
\end{proof}
\end{comment}
\subsection{Proof of Proposition \ref{lem:3dcompression}} \label{app:ProofofLem3dcompression}
We need several observations to prove the proposition, which we present next.
Throughout this section, let $L$ be a linear $[n,k,d]$ code over a field $\HH$ and let $\FF\subseteq \HH$ be a subfield. Let $m\geq 1$ be an integer, and let $\mc{C}$ denote the row interleaved code $\ric{L}{m}$. For a matrix $U\in \HH^{m\times n}$ and a vector $u_0\in \HH^n$, let $\aff{u_0}{U}$ denote the affine space as:
{
\begin{equation}\label{eq:affspace}
\aff{u_0}{U} := \{u_0+r^TU: r\in \FF^m\}
\end{equation}}
Note that in the above, the scalars in the linear combination come from $\FF$.
The following result was proved in \cite{ligero} for the setting $\HH=\FF$.
For completeness, we present an adaptation of the proof to the setting where
$\FF$ is a subfield of $\HH$.
\begin{lemma}\label{lem:farpoint}
Let $L$ and $\mc{C}$ be codes as defined, and let $e$ be a positive integer such that $e+2\leq |\FF|$. Then for any $u_0\in \HH^n$ and any $U^\ast\in \HH^{m\times n}$ such that $d(U^\ast,\mc{C})>e$, there exists $v\in \aff{u_0}{U^\ast}$ such that $d(v,L)>e$.
\end{lemma}
\begin{proof}
For sake of contradiction, assume that $d(u,L)\leq e$ for all $u\in
\aff{u_0}{U^\ast}$. Let $x$ be the point in $\aff{u_0}{U^\ast}$ such that
$d(x,L)$ is maximum. By assumption $d(x,L)\leq e$. Let $v\in L$ be such that
$\Delta(x,v)=d(x,L)$. Let $E\subseteq [n]$ be the set of positions where $x$ and
$v$ differ. Since $d(U^\ast,\mc{C})>e$, there exists row $R$ of $U^\ast$ and there is some
position $j\in [n]\backslash E$
such that $R_j\neq 0$. Let
$\alpha_1,\ldots,\alpha_{e+1}$ be distinct non zero elements in $\FF$. Let $E_k$
for $k=1,\ldots,e+1$ denote the set of positions where $x+\alpha_kR$ and $v$
differ. Fix a position $i\in E$. Then there exists at most one $k\in [e+1]$ such
that $i\not\in E_k$. By pegion hole principle, there exists $k\in [e+1]$ such
that $E\subseteq E_k$. We also observe that since $\alpha_k\neq 0$, $j\in E_k$.
Thus $d(x+\alpha_k,v)>d(x,v)$, contradicting the choice of $x$. This proves the
lemma.
\end{proof}
Next we prove a result about lines with respect to linear codes. The result was
proved in \cite{ligero} for the case $\HH=\FF$ and $e<d/4$. The authors in
\cite{ligero} conjectured the result for $e<d/3$. Here we prove the result for
$e<d/3$ when $\FF$ can be an arbitrary subfield of $\HH$.
\begin{lemma}[Affine Line]\label{lem:affineline}
Let $L$ be the linear code as defined. Define an affine line $\ell_{u,v}$ in $\HH^n$ as $\ell_{u,v} := \{u + \alpha v:\alpha\in \FF\}$ for $u,v\in \HH^n$. Then for $e < d/3$ and any affine line $\ell_{u,v}$:
\begin{enumerate}[{\rm (i)}]
\item $d(x,L)\leq e$ for all $x\in \ell_{u,v}$, or
\item $d(x,L)> e$ for at most $d$ points in $\ell_{u,v}$.
\end{enumerate}
\end{lemma}
\begin{proof}
%\nnote{Candidate for Appendix: Putting it here just to have all content for the moment}
In this proof, let $\delta(x,y)$ denote the set of positions where the vectors
$x$ and $y$ differ, and let $\wt{x}$ denote $|\delta(x,\bm{0})|$. The above is equivalent to
proving that if there exist $d+1$ distinct points $X =
\{x_1,\ldots,x_{d+1}\}\subseteq \ell_{u,v}$ such
that $d(x_i,L)\leq e$ for all $i\in [d+1]$, then $d(x,L)\leq e$ for all $x\in
\ell_{u,v}$. Assume that there exists such a set $X$ of $d+1$ points. Let $\ell_i$ denote the point in $L$ closest to $x_i$ for $i\in
[d+1]$. Set $\eta_i=x_i-l_i$ for all $i$ and let
$\bm{\eta}=\{\eta_1,\ldots,\eta_{d+1}\}$. By assumption we have
$\wt{\eta_i}\leq e$ for all $i\in [d+1]$. Since $\ell_{u,v}$ is contained in affine
span of any two distinct points on it, we have tuples
$\{(\alpha_i,\beta_i)\}_{i\in [d+1]}d$ such that $\alpha_i + \beta_i=1$ and $x_i=\alpha_ix_1 +
\beta_ix_2$ for $i\in [d+1]$. Note that $(\alpha_1,\beta_1)=(1,0)$ and
$(\alpha_2,\beta_2)=(0,1)$. Observe that $\alpha_i$'s and $\beta_i$'s must be
distinct for all $i\in [d+1]$. We call $X$ as {\em degenerate} if there exist
$i\neq j$ satisfying $\alpha_j=\gamma\alpha_i$ and $\beta_j=\gamma\beta_j$ for
some $\gamma\in \FF\backslash {0}$. We consider two cases:
\noindent{\em $X$ is degenerate}: Degeneracy implies there exist $i\neq j$ such that $x_i=\gamma x_j$ for
some $\gamma\in \FF\backslash\{0\}$. In this case we have $0 =
\frac{1}{1-\gamma}x_i -\frac{\gamma}{1-\gamma}x_j\in \ell_{u,v}$. This implies
$\ell_{u,v}=\{\alpha x_i: \alpha\in \FF\}$
and hence $d(x,L)=d(x_i,L)\leq e$ for all $x\in \ell_{u,v}$. Thus the statement
of the Lemma holds in this case.\smallskip
\noindent{\em X is not degenerate}: We first prove
that $\ell_i=\alpha_i\ell_1+\beta_i\ell_2$ and
$\eta_i=\alpha_i\eta_1+\beta_i\eta_2$ for
all $i\in [d+1]$. We have
\begin{align*}
\ell_i+\eta_i& = x_i = \alpha_ix_1 + \beta_ix_2
= \alpha_i(\ell_1+\eta_1) + \beta_i(\ell_2 + \eta_2) \\
&= (\alpha_i\ell_1 + \beta_i\ell_2) + (\alpha_i\eta_1 + \beta_i\eta_2)
\end{align*}
Rearranging we have,
$
\ell_i - (\alpha_i\ell_1 + \beta_i\ell_2) = \alpha_i\eta_1 +
\beta_i\eta_2 - \eta_i
$.
In the above equation we see that LHS is a vector in $L$. Further
$\wt{\alpha_i\eta_1 + \beta_i\eta_2 - \eta_i}\leq
\wt{\eta_1}+\wt{\eta_2}+\wt{\eta_i}\leq 3e < d$. Thus the LHS must be equal to
$0$ and hence $\ell_i = \alpha_i\ell_1 + \beta_i\ell_2$ and
$\eta_i=\alpha_i\eta_1+\beta_i\eta_2$. Observe that any $x^\ast\in \ell_{u,v}$ can
be written as $x^\ast=\alpha^\ast x_1+\beta^\ast x_2$. Thus
$d(x^\ast,L)=d(\alpha^\ast x_1+\beta^\ast x_2,L)\leq \wt{\alpha^\ast
\eta_1+\beta^\ast \eta_2}\leq |E|$ where $E$ denotes the set
$\delta(\eta_1,0)\cup \delta(\eta_2,0)$. Our final effort will be to show that
$|E|\leq e$.
\noindent{\it Claim}: $|E|\leq e$ where $E = \delta(\eta_1,0)\cup
\delta(\eta_2,0)$. We consider the partition of $E$ into sets
$E_0=\delta(\eta_1,0)\backslash \delta(\eta_2,0)$,
$E_1=\delta(\eta_2,0)\backslash \delta(\eta_1,0)$ and
$E_{01}=\delta(\eta_1,0)\cap \delta(\eta_2,0)$. Let $t=|E|$. Consider a $t\times (d+1)$ matrix $M=(m_{ij})$
where $m_{ij}=0$ if $j^{th}$ coordinate ($\eta_i^j$) of $\eta_i$ is zero, and $m_{ij}=1$
otherwise. We will show that each row of $M$ has at most one $0$. Assume that
there exists $i$ such that $m_{ip}=0$ and $m_{iq}=0$ for $p\neq q$. We consider
three cases:
\begin{itemize}
\item If $i\in E_0$, the above condition implies $\alpha_p\eta_1^i =
\alpha_q\eta_1^i=0$, or $\alpha_p=\alpha_q=0$ as $\eta_1^i\neq 0$ for $i\in E_0$.
This contradicts the fact that $X$ is not degenerate.
\item The case $i\in E_1$ is similar to above.
\item If $i\in E_{01}$ we have
$\alpha_p\eta_1^i+\beta_p\eta_2^i=\alpha_q\eta_1^i+\beta_q\eta_2^i=0$ which
implies $\alpha_p/\beta_p=\alpha_q/\beta_q=-\eta_2^i/\eta_1^i$, or
$\alpha_p/\alpha_q = \beta_p/\beta_q$ which contradicts the fact that $X$ is
not degenerate. Note that all denominators can be argued to be non-zero for $i\in E_{01}$.
\end{itemize}
From the above, we conclude that each row has at least $d$ entries as $1$.
Counting by columns, we have that each column has at most $e$ entries as $1$
(since $\wt{\eta_i}\leq e$ for all $i\in [d]$. Comparing the lower and upper
bounds on the number of $1$ entries in the matrix we have $td \leq e(d+1)$
which implies $t \leq e + e/d < e + 1$. Thus $t\leq e$, as we wanted to show.
This completes the proof.
\end{proof}
The following result underlies proximity protocols in our work and in
\cite{ligero}. Intuitively the result states that if a matrix is far away from the code $\mc{C}$, a random linear combination of its rows is far away from a codeword in $L$, and thus the proximity of the matrix to $\mc{C}$ may be tested by testing the proximity of a random linear combination of its rows to $L$.
\begin{lemma}[Affine Subspace]\label{lem:affinesubspace}
Let the codes $L$ and $\mc{C}$ be as defined and $e<d/3$ be an integer. Let $U\in \HH^{m\times n}$ be a matrix such that $d(U,\mc{C})>e$. Then for any $u_0\in \HH^n$, $\prob{d(u_0+r^TU,L)\leq e}\leq d/|\FF|$ for uniformly sampled $r\sample \FF^m$.
\end{lemma}
\begin{proof}
From Lemma \ref{lem:farpoint}, there exists $u\in \aff{u_0}{U}$ such that $d(u,L)>e$. Now we can write $\aff{u_0}{U}$ as union of affine lines passing through $u$. Applying lemma \ref{lem:affineline} to each line, we see that at most $d$ points $x$ on each affine line satisfy $d(x,L)\leq e$. Thus, a randomly sampled point $x$ in $\aff{u_0}{U}$, equivalently obtained as $u_0+r^TU$ for a randomly sampled vector $r\in \FF^m$ satisfies $d(x,L)$ with probability at most $d/|\FF|$.
\end{proof}
We are now in a position to prove Proposition \ref{lem:3dcompression}.
\begin{proof}[Proof of Proposition \ref{lem:3dcompression}]
Let $\HH$ denote the field $\FF^m$. Then $u_0$ can be viewed as a point in
$\HH^n$. Similarly $U$ can be viewed as $p\times n$ matrix over $\HH$.
We consider $\mc{C}$ as $[n,k,d]$ code over $\HH$ and $\mc{C}^p$ as the
interleaved code of $\mc{C}$ over the field $\HH$. Then by applying Lemma \ref{lem:affinesubspace}
with $\HH=\FF^m$ and codes $\mc{C}$ and $\mc{C}^p$ in place of codes $L$ and
$\mc{C}$, we have the desired bound.
\end{proof}
\subsection{Proof of knowledge for Linear Check}\label{app:linear_soundness}
\begin{proof}[{\bf Proof of Lemma ~\ref{lem:linearcheck_sound}:}]
Suppose the oracle $\pi$ commits to $\ewit$. $\ewit$ can be ``extracted'' by the appropriate extractor. Note that $\ewit\in (\mc{W}_2)^p$ as a commitment implicitly corresponds to such a matrix. Let $e<(n-\ell)/3$ be a parameter. First we show that an adversarial prover succeeds with negligible probability if $d(\ewit,(\mc{W}_1)^p)>e$. Second, we
show that for $d(\ewit,(\mc{W}_1)^p)\leq e$, the prover succeeds with negligible probability when $A\wit\neq b$ where $\wit=\dec(\ewit)$. Consider the case when $d(\ewit,(\mc{W}_1)^p)>e$. Then for
$\tilde{\ewit}=\sum_{i\in [p]}\rho_i\ewit[i,\cdot,\cdot]$, by Proposition ~\ref{lem:3dcompression},
we have $d(\tilde{\ewit},\mc{C}_1)>e$ with probability $1-o(1)$. Let $\tilde{\bm{c}}=(\tilde{c}_1,
\ldots,\tilde{c}_\ell)$ be the commitments to $\tilde{\ewit}$ sent by the prover
(Step 3 in Figure ~\ref{fig:linearcheck}). Define
the vector $\tilde{\bm{C}}=(\tilde{C}_1,\ldots,\tilde{C}_n)$ where
$\tilde{C}_k=\prod_{a=1}^\ell (\tilde{c}_a)^{\Lambda_{n,\ell}^T[a,k]}$ for $k\in [n]$.
Let $\hat{\bm{C}}=(\hat{C}_1,\ldots,\hat{C}_n)$ where
$\hat{C}_k=\prod_{i=1}^p(\pi[i,k])^{\rho_i}$. Now if
$\Delta(\tilde{\bm{C}},\hat{\bm{C}})>e$, we see that the prover succeeds in the
proximity check equation \eqref{eq:proxchecks} with probability at most $(1-e/n)^t$.
In the complete
proof, we show that when $\Delta(\tilde{\bm{C}},\hat{\bm{C}})\leq e$,
while $d(\tilde{\ewit},\mc{C}_1)>e$, the prover knows two openings to a commitment.
Thus an adversarial prover succeeds with probability at most $(1-e/n)^t$ when
$d(\ewit,(\mc{W}_1)^p)>e$.
We now consider the case when $d(\ewit,(\mc{W}_1)^p)\leq e$. From Lemma
~\ref{lem:bicdecoding}, there exists (unique) $\ewit^*\in (\mc{W})^p$
such that $\Delta_1(\ewit,\ewit^*)\leq e$.
Let $\wit=\dec(\ewit)=\dec(\ewit^*)$. We consider the prover's success
probability when $A\wit\neq b$, and thus with overwhelming probability $r^TA \wit \neq
r^Tb$. Let $P^*$ denote the correctly computed intermediate matrix from $\ewit^*$ and let
$\hat{P}$ denote the correctly computed intermediate matrix from $\ewit$. We note that
$\Delta_1(\hat{P},P^*)\leq e$. Let $c_1,\ldots,c_{s+\ell-1}$ be the commitments
to the intermediate matrix sent by the prover. If these commitments correspond to a
matrix $P=P^*$, the inner product check
$\innerproduct(\mathsf{pp},[1^m||0^{m-1}],\mathsf{cm},r^Tb)$ fails when using the
commitment $\mathsf{cm}=\prod_{k=1}^{s+\ell-1}c_k^{\varphi_k}$ for
$\varphi=\Phi\times [1^s]$. This is because $\innp{1^m||0^{m-1}}{P^*[1:2m-1,1:s+\ell-1]\times
\varphi}=r^TA\wit\neq r^Tb$, %where $\overline{P^*}$ denotes the $(2m-1)\times (s+\ell-1)$ submatrix of $P^*$,
as discussed in the protocol. If the
commitments correspond to a matrix $P\neq P^*$, we have
$\Delta_1(P,P^*)\geq n-s-\ell$ by distance property of the code
$\rsc{\eta}{n, s+\ell-1}$.
(We note that a prover implicitly commits to a matrix in
$\rsc{\eta}{n,s+\ell-1}\otimes \rsc{\alpha}{h,2m-1}$).
Thus there exists a set $E$ of at least $n-s-\ell-e$ columns, such that for
$k\in E$, $\hat{P}[\cdot,k]=P^*[\cdot,k]\neq P[\cdot,k]$. The checks
$\innp{\bm{1}_{j_u}}{\ewit[i,\cdot,k_u]}=X_u[i]$ for $i\in [p]$ and $u\in [t]$
force the prover to provide vectors $X_u=\ewit[\cdot,j_u,k_u]$ with
overwhelming probability. Then the consistency check succeeds for the
uniformly sampled query point $(j_u,k_u)$ when:
\[ P[j_u,k_u] = \sum_{i\in [p]}R^i(\alpha_{j_u},\eta_{k_u})X_u[i] =
\hat{P}[j_u,k_u] \]
For $k_u\in E$, the above holds when the distinct codewords $P^*[\cdot,k_u]$ and
$P[\cdot,k_u]$ in $\rsc{\alpha}{h,2m-1}$ agree on the position $j_u$, which happens with
probability at most $2m/h$. Thus probability $\prob{\mc{E}_u}$ that above query succeeds is bounded by:
\begin{align*}
\prob{\mc{E}_u}&\leq \frac{s+\ell+e}{n} + \frac{n-s-\ell-e}{n}\cdot\frac{2m}{h}
\\
&= \frac{2m}{h}+\left(1-\frac{2m}{h}\right)\left(\frac{s+\ell+e}{n}\right)
\end{align*}
The above probability is smaller than a constant $\epsilon<1$ for suitable
choices of parameters. Hence, the overall probability of prover's success is
$\negl(\secpar)$ for $t=O(\secpar)$.
\smallskip
\paragraph{Extraction}: Let $\extrac_{ip}$ be the extractor of the inner product argument which takes, in expectation, $\Pip(n)$ amount of time, where $\Pip(\cdot)$ is polynomial, to output the private vector of length or breaking the binding of the commitment scheme. We will design an extractor $\extrac$ for $\linearcheck$, which uses $\extrac_{ip}$.
\smallskip
If $\prover^\ast$ fails in the proximity check (step 12) then $\verifier$ outputs reject, and so the extractor $\extrac$ terminates with $\abort$.
If $\prover^\ast$ succeeds in the proximity check (step 12) then $\ewit\in \mc{W}_1$ and $\extrac$ proceeds in the following way:
\smallskip
$\extrac$ plays the role of the verifier and rewinds the provers polynomially many times if required.
\smallskip
$\extrac$ runs the protocol till step 8, sends $Q$ and receives $\ewit[\cdot, j_u,k_u]$. %Then it rewinds $\prover^\ast$ and sends new random $Q$. $\extrac$ keeps rewinding till $k_u$'s of all the $Q$s covered $[n]$. In expectation it takes $O(n\log(n))$ rewinds.
$\extrac$ picks random $\delta\in \FF^p$ and $\beta\in\FF^\ast$ and proceeds to run the inner product arguments. $\extrac$ uses $\extrac_{ip}$ and gets:
\begin{itemize}
\item $\overline{P}[\cdot,k_u]$ in expected time $\Pip(m)$, $\forall u\in[t]$
\item $z=\beta P_0 + \overline{P}\varphi$ in expected time $\Pip(m)$
\item $V_u = \sum_{i\in[p]} \delta_i\ewit[i,\cdot,k_u]$ in expected time $\Pip(m)$, $\forall u\in[t]$
\end{itemize}
Then $\extrac$ rewinds $\delta, \beta$ $O(p\log(p))$ times and gets $P_0$ from $z$ and from $V_u$, $\extrac$ gets $\ewit[\cdot,\cdot,k_u]$. $\extrac$ checks $\ewit[\cdot,j_u,k_u]$ received in step 8, matches with the extracted $\ewit[\cdot,\cdot,k_u]$'s $j_u$ position or not. If does not, then $\extrac$ gets two opening of $\pi[\cdot,k_u]$ and outputs $\abort$, otherwise $\extrac$ proceeds in the following way: $\extrac$ rewinds $\prover^\ast$ and sends uniformly random $Q$ and keeps repeating untill all the $Q$'s together cover all the columns. It takes $n\log(n)$ rewindings in expectation. Then $\extrac$ extracts the whole $\ewit$ and checks if all the vectors are consistent or not. If not, that gives the break for the binding of the commitment scheme and if consistent, then it decodes $\ewit$ and outputs correct witness $\wit$.
\smallskip
Therefore, expected Run time of $\extrac$ is $O(n\log(n)(O(p\log(p))(\Pip(m)) + \Pip(m) + \Pip(m))) $, which is polynomial in the size of the circuit.
\end{proof}
\subsection{Proof of knowledge of Quadratic Check }\label{app:quad_soundness}
\begin{proof}[{\bf Proof of Lemma ~\ref{lem:quadcheck_sound}:}]
Suppose the oracle $\pi$ commits to $\ewit_x, \ewit_y, \ewit_z$. %In full version, we show how this
$\ewit_x, \ewit_y, \ewit_z$ can be ``extracted'' by the appropriate extractor. Note that $\ewit_x||\ewit_y||\ewit_z\in
(\mc{W}_2)^{3p}$, where $\ewit = \ewit_x||\ewit_y||\ewit_z$ is the juxtaposing along $p$ direction, as a commitment implicitly corresponds to such a matrix. Let $e<(n-\ell)/3$ be a parameter. First we show that
an adversarial prover succeeds with negligible probability if $d(\ewit,(\mc{W}_1)^{3p})>e$. Second, we
show that for $d(\ewit,(\mc{W}_1)^{3p})\leq e$, the prover succeeds with negligible probability when
$\wit_x\circ\wit_y\neq\wit_z$ where $\wit_a=\dec(\ewit_a)$ for $a\in\{x,y,z\}$. Consider the case when $d(\ewit,(\mc{W}_1)^{3p})>e$. Then for
$\tilde{\ewit}=\sum_{i\in [3p]}\rho_i\ewit[i,\cdot,\cdot]$, by Proposition ~\ref{lem:3dcompression},
we have $d(\tilde{\ewit},\mc{C}_1)>e$ with probability $1-o(1)$. Let $\tilde{\bm{c}}=(\tilde{c}_1,
\ldots,\tilde{c}_\ell)$ be the commitments to $\tilde{\ewit}$ sent by the prover
(Step 3 in Figure ~\ref{fig:quadcheck}). Define
the vector $\tilde{\bm{C}}=(\tilde{C}_1,\ldots,\tilde{C}_n)$ where
$\tilde{C}_k=\prod_{a=1}^\ell (\tilde{c}_a)^{\Lambda_{n,\ell}^T[a,k]}$ for $k\in [n]$.
Let $\hat{\bm{C}}=(\hat{C}_1,\ldots,\hat{C}_n)$ where
$\hat{C}_k=\prod_{i=1}^{3p}(\pi[i,k])^{\rho_i}$. Now if
$\Delta(\tilde{\bm{C}},\hat{\bm{C}})>e$, we see that the prover succeeds in the
proximity check equation \eqref{eq:proxchecks} with probability at most $(1-e/n)^t$.
In the complete
proof, we show that when $\Delta(\tilde{\bm{C}},\hat{\bm{C}})\leq e$,
while $d(\tilde{\ewit},\mc{C}_1)>e$, the prover knows two openings to a commitment.
Thus an adversarial prover succeeds with probability at most $(1-e/n)^t$ when
$d(\ewit,(\mc{W}_1)^{3p})>e$.
We now consider the case when $d(\ewit,(\mc{W}_1)^{3p})\leq e$. From Lemma
~\ref{lem:bicdecoding}, there exists (unique) $\ewit^*\in (\mc{W})^{3p}$
such that $\Delta_1(\ewit,\ewit^*)\leq e$.
Let $\wit_a=\dec(\ewit_a)=\dec(\ewit^*_a)$. We consider the prover's success
probability when $\wit_x\circ \wit_y = \wit_z$, and thus with overwhelming probability $\sum_{i\in[p]} r_i\cdot(\wit_x[i,\cdot,\cdot]\cdot\wit_y[i,\cdot,\cdot]-\wit_z[i,\cdot,\cdot]) = [\bm{0}]^{ms}$. Let $P^*$ denote the correctly computed intermediate matrix from $\ewit^*$ and let
$\hat{P}$ denote the correctly computed intermediate matrix from $\ewit$. We note that
$\Delta_1(\hat{P},P^*)\leq e$. Let $c_1,\ldots,c_{2\ell-1}$ be the commitments
to the intermediate matrix sent by the prover. If these commitments correspond to a
matrix $P=P^*$, the inner product check
$\innerproduct(\mathsf{pp},[\gamma||0^{m-1}],\mathsf{cm},0)$ fails when using the
commitment $\mathsf{cm}=\prod_{k=1}^{2\ell-1}c_k^{\varphi_k}$ for
$\varphi=\Phi\times \tau$. This is because $\innp{\gamma||0^{m-1}}{P^*[1:2m-1,1:2\ell-1]\times
\varphi}=\sum_{j\in[m]} \gamma_j\sum_{k\in[s]} \tau_k\sum_{i\in[p]}r_i[\wit_x[i,j,k]\cdot\wit_y[i,j,k]-\wit_z[i,j,k]] \neq 0$, %where $\overline{P^*}$ denotes the $(2m-1)\times (s+\ell-1)$ submatrix of $P^*$,
as discussed in the protocol. If the
commitments correspond to a matrix $P\neq P^*$, we have
$\Delta_1(P,P^*)\geq n-2\ell$ by distance property of the code
$\rsc{\eta}{n, 2\ell-1}$.
(We note that a prover implicitly commits to a matrix in
$\rsc{\eta}{n,2\ell-1}\otimes \rsc{\alpha}{h,2m-1}$).
Thus there exists a set $E$ of at least $n-2\ell-e$ columns, such that for
$k\in E$, $\hat{P}[\cdot,k]=P^*[\cdot,k]\neq P[\cdot,k]$. The checks
$\innp{\bm{1}_{j_u}}{W_u}=\sum_{i\in[p]}\delta_i(\beta_x X_u + \beta_y Y_u + \beta_z Z_u)$ for $i\in [p]$ and $u\in [t]$
force the prover to provide vectors $X_u=\ewit_x[\cdot,j_u,k_u], Y_u=\ewit_y[\cdot,j_u,k_u],
Z_u=\ewit_z[\cdot,j_u,k_u]$ with
overwhelming probability. Then the consistency check succeeds for the
uniformly sampled query point $(j_u,k_u)$ when:
\[ P[j_u,k_u] = \sum_{i\in [p]}r_i(X_u[i]\cdot Y_u[i]-Z_u[i]) =
\hat{P}[j_u,k_u] \]
For $k_u\in E$, the above holds when the distinct codewords $P^*[\cdot,k_u]$ and
$P[\cdot,k_u]$ in $\rsc{\alpha}{h,2m-1}$ agree on the position $j_u$, which happens with
probability at most $2m/h$. Thus probability $\prob{\mc{E}_u}$ that above query succeeds is bounded by:
\begin{align*}
\prob{\mc{E}_u}&\leq \frac{2\ell+e}{n} + \frac{n-2\ell-e}{n}\cdot\frac{2m}{h}
\\
&= \frac{2m}{h}+\left(1-\frac{2m}{h}\right)\left(\frac{2\ell+e}{n}\right)
\end{align*}
The above probability is smaller than a constant $\epsilon<1$ for suitable
choices of parameters. Hence, the overall probability of prover's success is
$\negl(\secpar)$ for $t=O(\secpar)$.
\smallskip
\paragraph{Extraction}: Let $\extrac_{ip}$ be the extractor of the inner product argument which takes, in expectation, $\Pip(n)$ amount of time, where $\Pip(\cdot)$ is polynomial, to output the private vector of length or breaking the binding of the commitment scheme. We will design an extractor $\extrac$ for $\quadcheck$, which uses $\extrac_{ip}$.
\smallskip
If $\prover^\ast$ fails in the proximity check (step 15) then $\verifier$ outputs reject, and so the extractor $\extrac$ terminates with $\abort$.
If $\prover^\ast$ succeeds in the proximity check (step 15) then $\ewit\in \mc{W}_1$ and $\extrac$ proceeds in the following way:
\smallskip
$\extrac$ plays the role of the verifier and rewinds the provers polynomially many times if required.
\smallskip
$\extrac$ runs the protocol till step 7, sends $Q,\gamma, \tau$ and receives $\ewit_x[\cdot, j_u,k_u], \ewit_y[\cdot, j_u,k_u], \ewit_z[\cdot,j_u,k_u]$. %Then it rewinds $\prover^\ast$ and sends new random $Q$. $\extrac$ keeps rewinding till $k_u$'s of all the $Q$s covered $[n]$. In expectation it takes $O(n\log(n))$ rewinds.
$\extrac$ picks random $\delta\in \FF^p$, $\beta_x,\beta_y,\beta_z\in\FF$ and $\beta\in\FF^\ast$ and proceeds to run the inner product arguments. $\extrac$ uses $\extrac_{ip}$ and gets:
\begin{itemize}
\item $\overline{P}[\cdot,k_u]$ in expected time $\Pip(m)$, $\forall u\in[t]$
\item $z=\beta P_0 + \overline{P}\varphi$ in expected time $\Pip(m)$
\item $V_u = \sum_{i\in[p]} \delta_i(\beta_x\ewit_x[i,\cdot,k_u]+\beta_y\ewit_y[i,\cdot,k_u]+\beta_z\ewit_z[i,\cdot,k_u])$ in expected time $\Pip(m)$, $\forall u\in[t]$
\end{itemize}
Then $\extrac$ rewinds $\delta, \beta_x,\beta_y,\beta_z,\beta$ $O(p\log(p))$ times and gets $V_u$, $\extrac$ gets $\ewit_x[\cdot,\cdot,k_u], \ewit_y[\cdot,\cdot,k_u], \ewit_z[\cdot,\cdot,k_u]$ by solving a system of equation with $3p$ unknowns. $\extrac$ checks $\ewit_a[\cdot,j_u,k_u]$ received in step 7, matches with the extracted $\ewit_a[\cdot,\cdot,k_u]$'s $j_u$ position or not, for $a\in\{x,y,z\}$. If does not, then $\extrac$ gets two opening of $\pi_a[\cdot,k_u]$, for some $a\in\{x,y,z\}$ and outputs $\abort$, otherwise $\extrac$ proceeds in the following way: $\extrac$ rewinds $\prover^\ast$ and sends uniformly random $Q$ and keeps repeating untill all the $Q$'s together cover all the columns. It takes $n\log(n)$ rewindings in expectation. Then $\extrac$ extracts the whole $\ewit_x,\ewit_y,\ewit_z$ and checks if all the vectors are consistent or not. If not, that gives the break for the binding of the commitment scheme and if consistent, then it decodes $\ewit_a$ and outputs correct witness $\wit_a$ for $a\in\{x,y,z\}$.
\smallskip
Therefore, expected Run time of $\extrac$ is $O(n\log(n)(O(p\log(p))(\Pip(m)) + \Pip(m) + \Pip(m))) $, which is polynomial in the size of the circuit.
\end{proof}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{comment}
\subsection{Proof of soundness of Distributed Linear Check}
\begin{lemma}[Soundness with Extraction]\label{lem:distlinearcheck_sound}
For all polynomially bounded adversary $\Adv$ controlling all the provers $\prover_1, \ldots, \prover_{\Num}$ and all $\pi\in\GG^{p\times n}$, $A\in\FF^{M\times N}, b\in\FF^M$, there exists an polynomial time extractor $\extrac$ with rewinding access to the transcript $\tr$ between the aggregator $\Ag$ and the verifier $\verifier$ such that $\extrac$ either breaks the commitment binding or outputs a witness with overwhelming probability whenever $\Adv$ succeeds, i.e.,
{\small
\begin{align*}
\condprob{\begin{array}{c}
\ewit=\open(\pi)\wedge \\
A\wit=b
\end{array}
}{
\begin{array}{c}
\sigma\gets \gen(\secparam) \\
\ewit\gets \extr^{\mathsf{tr}}(\bm{x},\sigma) \\
\wit\gets \dec(\ewit)
\end{array}}\geq
\epsilon(\Adv)-\kappa_{lc}(\secpar)
\end{align*}
}
where $\epsilon(\Adv):= \condprob{\langle \Adv(\bm{x},\sigma),\verifier^\pi(\bm{x},\sigma)\rangle=1}{\sigma\gets \gen(\secparam)}$ denotes the success probability of $\Adv$, $\kappa_{lc}$ denotes a negligible function, and $\bm{x}$ denotes the tuple $(A,b,M,N)$.
\end{lemma}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Proof of soundness of Distributed Quadratic Check}
\begin{lemma}[soundness with extraction]\label{lem:distquadcheck_sound}
For all polynomoially bounded adversary $\Adv$, controlling all the provers $\prover_1, \ldots, \prover_{\Num}$ and $\pi\in\GG^{3p\times n}$, there exists an expected polynomial time extractor $\extrac$ with rewinding access to the transcript $\tr$ between the aggregator $\Ag$ and the verifier $\verifier$ such that $\extrac$ either breaks the commitment binding, or it outputs a witness with overwhelming probability whenever $\Adv$ succeeds, i.e.,
{\footnotesize
\begin{align*}
\condprob{
\begin{array}{c}
{[}\ewit_x||\ewit_y||\ewit_z{]}=\open(\pi)\wedge \\
\wit_z=\wit_x\circ\wit_y
\end{array}
}{
\begin{array}{c}
\sigma %\sample \gen(\secparam) \\
\leftarrow \gen(\secparam) \\
{[}\ewit_x||\ewit_y||\ewit_z{]}%\sample \extr^{\mc{O}}(\sigma)\\
\leftarrow \extr^{\mathsf{tr}}(\sigma) \\
\wit_a=\dec(\ewit_a), a\in \{x,y,z\}
\end{array}
}\\
\geq \epsilon(\Adv) - \kappa_{\rm qd}(\secpar)
\end{align*}
}
for some negligible function $\kappa_{qd}$. In the above, $\epsilon(\Adv)$
denotes the success probability of the prover $P^\ast$ as before.
\end{lemma}
\end{comment}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{comment}
\section{cryptographic preliminaries}
\begin{comment}
\subsection{Commitment scheme} \label{app:DefCommitment}
\begin{definition}\label{defn:commscheme}
A pair of $\ppt$ algorithms $(\gen,\com)$ constitute a non-interactive commitment scheme if $\sigma\sample \gen(\secparam)$ consists of description of sets $\calM_\sigma$ (message space), $\calR_\sigma$ (randomness space), $\calC_\sigma$ (commitment space) and an efficiently computable function $\com_\sigma: \calM_\sigma\times \calR_\sigma\rightarrow \calC_\sigma$ which is {\em hiding} and {\em binding} as defined later.
\end{definition}
For $x\in \calM_\sigma$, we generate a {\em commitment} of $x$ as $\com_\sigma(x,r)$ where $r\sample \calR_\sigma$ is drawn uniformly at random. For ease of notation, we simply use $\com$ instead of $\com_\sigma$ and use $\com(x)$ to denote the random variable corresponding to commitment of $x$.
\begin{definition}[Hiding Commitment]\label{defn:hidingcomm}
A commitment scheme $(\gen,\com)$ is called perfectly {\em hiding} if for all adversaries $\adv$, the following probability is $1/2$:
{\small
\begin{align*}
\condprob{b=b'}{
\begin{array}{l}
\sigma\gets \gen(\secparam); \\
(x_0,x_1)\in \calM^2_p\gets \adv(\sigma); \\
b\sample \bitset; c\gets \com(x_b);\\
b'\gets \adv(\secparam,\sigma,c)
\end{array}
}
\end{align*}
}
\end{definition}
\begin{definition}[Binding Commitment]\label{defn:bindingcomm}
A commitment scheme $(\gen,\com)$ is called {\em binding} if for all $\ppt$ $\adv$,
{\small
\begin{align*}
\condprob{
\begin{array}{c}
\com_\sigma(x_0,r_0)=\com_\sigma(x_1,r_1)\\
\wedge x_0\neq x_1
\end{array}}{
\begin{array}{l}
\sigma \gets \gen(\secparam) \\
x_0,x_1,r_0,r_1 \gets \adv(\secparam,\sigma)
\end{array}
}\\
< \negl(\lambda)
\end{align*}
}
\end{definition}
\subsection{Inter-product Arguments} \label{inner-product-instan}
\noindent{\em Logarithmic Inner-product Argument}: In this setting, we have $\calM=\bbZ^n_p$, $\calR=\bbZ_p$, $\calC=\bbG$ where $\bbG$ is group of prime order $p$. The algorithm $\gen$ samples generators $g_1,\ldots,g_n$, $h$ $\gets \bbG$.
The commitment is a Pederson vector commitment given by $\com({\bf x } ,r ) = h^r \cdot \prod_{i=1}^n {g_i}^{x_i}$ where ${\bf x}=(x_1,\ldots,x_n)$.
We use the inner-product argument $(\prover,\verifier)$ from Bootle et. al in \cite{bulletproofs} for the commitment scheme $(\gen,\com)$. The interactive protocol $(\prover,\verifier)$ is a $O(\log n)$ round protocol with argument size $O(\log n)$. The verifier $\viplog$ performs $O(n)$ operations in $\bbZ_p$ and $O(n)$ operations in $\bbG$.\smallskip
\noindent{\em Square-root Inner-product Argument}: In this setting we use the same commitment scheme as above. For the inner product argument we use the interactive protocol $(\pipsq,\vipsq)$ from \cite{InnerProductDLS}. The construction in \cite{InnerProductDLS} gives a $5$-round protocol with total communication complexity $O(\sqrt{n})$. Here, the verifier $\vipsq$ performs $O(n)$ operations in $\bbZ_p$ and $O(\sqrt{n})$ operations in $\bbG$.
\end{comment}
\begin{comment}
\subsection{Forking Lemma and Knowledge Soundness}
We use the Forking Lemma from \cite{InnerProductDLS,bulletproofs} to describe
expected polynomial time knowledge extractors for our protocols. Let
$(\prover,\verifier)$ be a public coin $(2\mu+1)$-move interactive protocol with
challenges $x_1,\ldots,x_\mu$ in sequence. Let $n_i\geq 1$ for $1\leq i\leq
\mu$. We call a collection of $n=\prod_{i=1}^\mu n_i$ accepting transcripts to be
$(n_1,\ldots,n_\mu)$-tree of accepting transcripts, if the challenges are
organized in the tree format that we describe now: \commentA{the following didn't make sense. what does a path from root to a leaf node signify? one sequence of challenges for an accepting execution? at any rate this portion needs a clean write-up} The root of the tree is
labelled with the statement being proved. Each node of depth $i<\mu$ has exactly
$n_i$ children, each labelled with a distinct value of the $i^{th}$ challenge
$x_i$. We call a $\ppt$ algorithm $\chi$ to be a {\em witness extraction
algorithm} if $\chi$ can extract a witness $w$ to the statement, given an
appropriate tree of accepting transcripts. This can be seen as a generalization
of the notion of special soundness for Sigma protocols with $n=2$ and $\mu=1$.
\end{comment}
% remove argument of knowledge
\begin{comment}
\begin{definition}[Argument of Knowledge]\label{def:argofknowledge}
Let $(\setup,\prover,\verifier)$ be an public coin interactive protocol. We say that
$(\setup,\prover,\verifier)$ is an {\em argument of knowledge} for the language
$\mc{L}$ if for every $\ppt$
prover $P^\ast$, there exists an expected polynomial time extractor $\extr$ such that for all $x$:
%\begin{comment}
{\small
\begin{align*}
\condprob{(x,w)\in \mc{L}}{
\begin{array}{c}
\sigma\gets\setup(\secparam) \\
w\gets \extr^{\mc{O}}(x,\sigma)
\end{array}
}\\
\geq \condprob{\langle
P^\ast(x,\sigma),\verifier(x,\sigma)\rangle=1}{\sigma\gets \setup(\secparam)} -
\negl(\lambda)
\end{align*}}
%
%\begin{align}
%&\prob{(x,w)\in\mc{L}| \sigma \sample \setup(\secparam); w\sample \extr^{\mc{O}}(x,\sigma)}\\
%\geq & \prob{\innp{P^*(x,\sigma)}{\verifier(x, \sigma)} = 1|\sigma\sample \setup(\secparam)} - \kappa(\lambda)
%\end{align}
for some negligible function $\negl$. In the above $\mc{O}$ denotes the transcript oracle $\langle P^\ast(x,\sigma)$ ,$\verifier(x,\sigma)\rangle$which can be rewound to any previous state, and resumed with fresh randomness for the
verifier $\verifier$.
\end{definition}
Our argument of knowledge proofs rely on the following result from \cite{bulletproofs}.
While the result is originally stated and proved for showing witness-extended
emulation, we restate it for the case of argument of knowledge. The proof in
\cite{InnerProductDLS} also applies to this restricted case.
\begin{lemma}[Forking Lemma,\cite{bulletproofs}]\label{lem:forkinglemma}
Let $(\setup,\prover,\verifier)$ be a $(2\mu+1)$-round public coin interactive
protocol. Let $\chi$ be a $\ppt$ witness extraction algorithm that outputs a
witness with probability $1-\negl(\secpar)$ from an $(n_1,\ldots,n_\mu)$-tree
of accepting transcripts. Assuming that $\prod_{i=1}^\mu n_i$ is bounded by a
polynomial in security parameter $\secpar$, the protocol
$(\setup,\prover,\verifier)$ is an argument of knowledge.
\end{lemma}
\section{Proofs}
\begin{proof}[Proximity 2D]
The extractor $\extr$ starts by emulating the verifier in the protocol
$\proximityTwoD$. At the step 5, it uses the extractor $\extr_{ip}$ for the
inner product protocol to extract the witness $z$ for the $\innerproduct$
subprotocol. If the initial transcript rejects, $\extr$ fails with output
$\bot$. Otherwise, it rewinds transcript to step 2, till it finds $\ell+1$
additional accepting transcripts. Let $\tau^i,\delta^i$ denote the random
vectors in step 2, in the $i^{th}$ accepting transcript (we let $i=0$ denote the
initial transcript). Similarly, let $x^i$, $\mathsf{cm}^i$ denote the values of
vectors $x$ and $\mathsf{cm}$ in the $i^{th}$ accepting transcript, while $(z^i,o^i)$
denotes the witness extracted by the inner product extractor $\extr_{ip}$
corresponding to $x^i$ and $\mathsf{cm}^i$. If the inner product extractor
$\extr_{ip}$ fails with $z^i=\bot$ for any $i\in [\ell+1]$, the extractor $\extr$
fails with output $\bot$. From the inner product extractions we have the
following:
\begin{align*}
\begin{array}{rlll}
\comm(z^1,o^1)=& c_0 + \mu^1_1c_1+ & \hdots & +\mu^1_{\ell}c_{\ell} \\
\vdots & \vdots & \ddots & \vdots \\
\comm(z^{\ell+1},o^{\ell+1})=& c_0 + \mu^{\ell+1}_1c_1+ & \hdots & +\mu^{\ell+1}_{\ell}c_{\ell}
\end{array}
\end{align*}
Let $\Lambda$ denote the $(\ell+1)\times (\ell+1)$ matrix $[1^{\ell+1}|\mathbf{M}]$ with $\mathbf{M}[i,j]=\mu^i_j$. For convenience of notation, we will consider row and column indices of $(\ell+1)\times (\ell+1)$ matrices in this proof to be over the set $\{0,\ldots,\ell\}$.
Since $\mc{T}$ is a rank $\ell$ matrix, we see that $\Lambda$ is an invertible
matrix for random choices of vectors $\tau^i$, except with probability
$1/|\FF|$. Let $\Omega$ be the $(\ell+1)\times (\ell+1)$ matrix such that
$\Omega\Lambda=I_{\ell+1}$. Define $U_k = \sum_{i=0}^{\ell}\Omega[k,i]z^i$ and $\omega_k=\sum_{i=0}^{\ell}\Omega[k,i]o^i$.
$k\in [\ell]$. Then for $k\geq 1$ we have,
\begin{align*}
\comm(U_k,\omega_k) &= \sum_{i=0}^{\ell}\Omega[k,i]\comm(z^i,o^i) \\
&= \sum_{i=0}^{\ell}\Omega[k,i]\sum_{j=0}^{\ell}\Lambda[i,j]c_j \\
&= \sum_{j=0}^{\ell}\big(\sum_{i=0}^{\ell}\Omega[k,i]\Lambda[i,j]\big)c_j
\\
&= c_k \text{ (using $\Omega\Lambda=I_{\ell+1})$ }
\end{align*}
Thus $\overline{U}=(U_1,\ldots,U_{\ell})$ and $\bm{\omega}=(\omega_1,\ldots,\omega_{\ell})$ satisfies $(\overline{U},\bm{\omega})=\open(\bm{c})$. Now we
consider the probability that $\overline{U}\mc{T}\in \mc{C}_2$. Let $A$ denote the event
that the first transcript accepts. Let $B\subseteq A$ be the event that
$(\overline{U}\neq\bot)\cap (\overline{U}\mc{T}\in \mc{C}_2)$. We have,
\begin{align*}
&\prob{B}\\ &= \prob{A} - \prob{A\cap \neg B} \\
&\geq \prob{A} - \prob{A\cap (\overline{U}=\bot)} - \prob{A\cap
(\overline{U}\mc{T}\not\in \mc{C}_2)} \\
&= \prob{A} - \prob{A\cap (\overline{U}=\bot)} - \prob{A\cap
(\mc{T}^T\overline{U}^T\mc{H}_2\neq 0)} \\
&\geq \prob{A} - \prob{A\cap (\overline{U}=\bot)} -\\
& \text{ }\condprob{\tau^T\mc{T}^T\overline{U}^T\mc{H}_2\delta=
0}{\mc{T}^T\overline{U}^T\mc{H}_2\neq 0} \\
&\geq \prob{\langle P^\ast(\bm{c},\sigma),\verifier(\bm{c},\sigma)\rangle=1}
- \big(\ell.\kappa_{ip}(\secpar)+1/|\FF|\big) - 2/|\FF|
\end{align*}
In the above, we bound the probability $\condprob{\tau^T\mc{T}^T\overline{U}^T\mc{H}_2\delta=
0}{\mc{T}^T\overline{U}^T\mc{H}_2\neq 0}$ by $2/|\FF|$ as $\tau$ and $\delta$ are
distributed uniformly and independently of the extracted witness $\overline{U}$. The
probability $\prob{A\cap (\overline{U}=\bot)}$ is bound in terms of the probability
of inner product extractor returning an invalid witness or $\Lambda$ being
singular which is at most $\ell.\kappa_{ip}(\secpar)+1/|\FF|$. The
statement of the lemma now holds by setting
$\kappa_{2d}(\secpar):=\ell.\kappa_{ip}(\secpar) + 3/|\FF|$.
\end{proof}
%%% proximity 3d proof
\begin{proof}[Proximity 3D]
As before the extractor $\extr$ emulates the verifier in the protocol
$\proximityThreeD$. In case the first transcript is accepting, the extractor
rewinds the prover sufficiently many times to obtain a tree of accepting transcripts with $p$ distinct
choices of the randomness $r$ in step (1) and $\theta := tn$ different values of $Q$
on step (5). Let $r^{1},\ldots,r^{p}$ denote the values of $r$ in step (1)
and let $\tilde{\mathbf{c}}^{1},\ldots,\tilde{\mathbf{c}}^{p}$ denote the corresponding
commitment vectors in step (3). Similarly, let $Q^{uv}$ denote the $v^{th}$
choice of $Q$ corresponding to $u^{th}$ value of $r$ for $u\in [p]$ and $v\in
[\theta]$. We do not consider the initial transcript as part of the tree of
transcripts. We notice that we have $\cup_{v\in [\theta]}Q^{uv}=[n]$ for all
$u\in [p]$, except with probability at most $pn(1-1/n)^{nt}\leq pne^{-t}$. At
step (4), $\extr$ uses extractor $\extr_{2d}$ for the protocol $\proximityTwoD$
to extract $h\times \ell$ matrix $W^{u}$ for $u\in [p]$. The extractor $\extr$ fails with output $\bot$
if $\extr_{2d}$ fails in any of its invocations. By the property of $\extr_{2d}$
we have that $\open(\tilde{\bm{c}}^u)=W^u$ and $W^u\in L_1\oplus L_2$ for all
$u\in [p]$. We construct the witness $\ewit$ by solving for each $h$-length
vector $\ewit[i,\cdot,k]$ for $i\in [p], k\in [n]$ according to
\eqref{eq:extraction3d}. Let $T_1,\ldots,T_n$ denote the columns of matrix
$\mc{T}$.
\begin{align}\label{eq:extraction3d}
\text{For each $k\in [n]$ we have:} \nonumber \\
\begin{array}{cccc}
r^1_1\ewit[1,\cdot,k]+ &\hdots & +r^1_p\ewit[p,\cdot,k] &= W^1T_k \\
\vdots & \ddots & \vdots & \vdots \\
r^p_1\ewit[1,\cdot,k]+ &\hdots & +r^p_p\ewit[p,\cdot,k] &= W^pT_k
\end{array}
\end{align}
Let $\Lambda$ denote the $p\times p$ matrix with $\Lambda[i,j]=r^i_j$. We may
assume that $\Lambda$ is invertible, except with probability $1/|\FF|$. Let
$\Omega$ be such that $\Omega\Lambda = I_p$. It can be seen that the system of
equations \eqref{eq:extraction3d} is satisfied by setting $\ewit[i,\cdot,k]=\sum_{j\in
[p]}\Omega[i,j]W^jT_k$ for $i\in [p],k\in [n]$. First we prove that
$\comm(\ewit[i,\cdot,k])=\pi[i,k]$ for all $i$ and $k$. Indeed,
\begin{align*}
\comm(\ewit[i,\cdot,k]) & =\sum_{j\in [p]}\Omega[i,j]\comm(W^jT_k) \\
& = \sum_{j\in [p]}\Omega[i,j]\sum_{a\in [\ell]}\mc{T}[a,k]\comm(W^j[.,a]) \\
& = \sum_{j\in [p]}\Omega[i,j]\sum_{a\in
[\ell]}\mc{T}[a,k]\tilde{\bm{c}}^j_a \\
& = \sum_{j\in [p]}\Omega[i,j]\sum_{a\in [p]}r^j_a\pi[a,k] \text{ (using check
(7)) } \\
& = \sum_{a\in [p]} \big(\sum_{j\in [p]}\Omega[i,j]\Lambda[j,a]\big)\pi[a,k]
\\
& = \pi[i,k]
\end{align*}
Note that the columns
$\ewit[i,\cdot,k]$ are linear combinations of the columns of extracted matrices
$W^u, u\in [p]$ which are codewords in the code $L_2$. Thus, each column
$\ewit[i,\cdot,k]$ in the extracted witness $\ewit$ is a codeword in $L_2$. Thus
$\ewit\in \mc{W}_2$. Next, we bound the probability that
$d_1(\ewit,\mc{W}_1)\leq e$. To do so, we define the
following events of interest:
\begin{itemize}
\item $A$: denotes the event that the first transcript is accepting. By
definition, $\prob{A}$ is the accepting probability $\prob{\langle
P^\ast(\sigma),\verifier(\sigma)\rangle=1}$.
\item $B$: denotes the sub-event of $A$ when the extracted opening $\ewit$ to the
commitment oracle $\pi$ is valid, i.e $d_1(\ewit,\mc{W}_1)\leq e$.
\item $F$: denotes the event that $\extr$ fails with output $\bot$. This
happens when one of the invocations subprotocol extractor $\extr_{2d}$ fails, or
unlikely events that the matrix $\Lambda$ is singular, or that $\theta=tn$
repetitions of the random query locations $Q$ fail to cover the set of indices
$[n]$. As discussed in the proof, we can bound $\prob{F}$ by
$p\kappa_{2d}(\secpar) + pne^{-t} + 1/|\FF|$.
\end{itemize}
Using an analysis similar to the one in the proof of Lemma
\ref{lem:proximity2d_sound}, we have:
\begin{equation}\label{eq:probeq1}
\prob{B}\geq \prob{A} - \prob{F} - \condprob{A}{d_1(\ewit,\mc{W}_1)>e}
\end{equation}
Let $\tilde{\bm{c}}=(\tilde{c}_1,\ldots,\tilde{c}_\ell)$ denote the vector sent
by the prover in step (3). We consider the $n$-length vector $C_{adv}$
defined by $C_{adv}[k]=\sum_{i\in [\ell]}\mc{T}[i,k]\tilde{c}_i$ for $k\in [n]$. Let
$C_{hon}$ denote the honestly computed vector defined by $C_{hon}[k]=\sum_{i\in
[p]}r_i\pi[i,k]$. Note that for honest oracle $\pi\in\mc{W}$ and honest prover
we would have $C_{adv}=C_{hon}$. Let $\varepsilon := \Delta(C_{adv},C_{hon})$ denote the
hamming distance between the two vectors. Now we can write
$\condprob{A}{d_1(\ewit,\mc{W}_1)>e}$ as:
\begin{align}\label{eq:probeq3}
\condprob{A}{d_1(\ewit,\mc{W}_1)>e} &\leq \condprob{A}{d_1(\ewit,\mc{W}_1)>e,
\varepsilon \leq e}\nonumber \\
&\quad +\condprob{A}{d_1(\ewit,\mc{W}_1)>e, \varepsilon > e}
\end{align}
The above follows from the identity $\condprob{A}{X}\leq
\condprob{A}{X_1}+\condprob{A}{X_2}$ for $X=X_1\uplus X_2$. Next we note
that for $\varepsilon > e$, the check in step 7, succeeds with probability at most
$(n-e)^t/n^t=(1-e/n)^t$. Thus $\condprob{A}{d_1(\ewit,\mc{W}_1)>e,\varepsilon > e}\leq
(1-e/n)^t$. Next we bound $\condprob{A}{d_1(\ewit,\mc{W}_1)>e,\varepsilon\leq e}$.
With probability at least $1-\kappa_{2d}(\secpar)$, the extractor $\extr_{2d}$
produces a witness $\overline{U}$ such that $\overline{U}\mc{T}\in L_1\oplus L_2$, and
$\overline{U}=\open(\tilde{\bm{c}})$. Let
$U_{adv} = \overline{U}\mc{T}$ denote the codeword in $L_1\oplus L_2$. We note that
$U_{adv}=\open(C_{adv})$. Define $U_{hon}=\sum_{i\in [p]}r_i\ewit[i,.,.]$. Note
that $U_{hon}=\open(C_{hon})$ by homomorphism of the commitment scheme. Since
$\varepsilon=d(C_{adv},C_{hon})\leq e$, we must have:
\begin{enumerate}[{\rm (i)}]
\item $\Delta_1(U_{adv},U_{hon})\leq e$ or,
\item There exists an index $j\in [n]$ such that $C_{adv}[j]=C_{hon}[j]$, but
their corresponding openings $U_{adv}[j]$ and $U_{hon}[j]$ are different. This
constitutes breakage to the binding property of the commitment scheme $\comm$.
\end{enumerate}
Assuming $\Delta_1(U_{adv},U_{hon})\leq e$, we have $d_1(U_{hon},\mc{C}_1)\leq
e$. From the above, we can now write:
\begin{align*}\label{eq:probeq4}
&\condprob{A}{d_1(\ewit,\mc{W}_1)>e,\varepsilon\leq e}\\
\leq&
\condprob{d_1(U_{hon},\mc{C}_1)\leq e}{d_1(\ewit,\mc{W}_1)>e} + \mc{B}(\secpar)
\end{align*}
Since $U_{hon}=\sum_{i\in [p]}r_i\ewit[i,\cdot,\cdot]$, from Lemma
\ref{lem:3dcompression}, we have $\condprob{d_1(U_{hon},\mc{C}_1)\leq
e}{d_1(\ewit,\mc{W}_1)>e}<d_1/|\FF|$ where $d_1$ is the minimum distance of the
code $L_1$. Thus, Equation \eqref{eq:probeq3} gives us
\begin{equation}\label{eq:probeq5}
\condprob{A}{d_1(\ewit,\mc{W}_1)>e}\leq \left(1-\frac{e}{n}\right)^t,
\frac{d_1}{|\FF|}+\kappa_{2d}(\secpar) + \mc{B}(\secpar)
\end{equation}
From Equations \eqref{eq:probeq1} and \eqref{eq:probeq5} we see that the
statement of the Lemma holds for
\[\kappa_{3d}(\secpar) := (p+1)\kappa_{2d}(\secpar) + pne^{-t} +
\left(1-\frac{e}{n}\right)^t + \frac{d_1+1}{|\FF|} + \mc{B}(\secpar) \]
\end{proof}
\begin{proof}[Linear Check]
We describe an extractor $\extr$ which outputs $\ewit$ such that $\open(\pi)=\ewit$ and $A\wit = b$
for $\wit=\dec(\ewit)$. The extractor $\extr$ uses the extractor $\extr_{3d}$ for
the protocol $\proximityThreeD$ to extract the witness $\ewit$ which opens to
the oracle $\pi$. Note that, with probability at least ($1-\kappa_{3d}(\secpar)$),
the extracted witness $\ewit$ satisfies $d_1(\ewit,\mc{W}_1)<e$ and $\ewit\in
\mc{W}_2$. It follows that for each slice $\ewit^i:=\ewit[i,\cdot,\cdot]$ for $i\in [p]$,
we have $\ewit^i\in \mc{C}_2$ and $d_1(\ewit^i,\mc{C}_1)<e$. Let $E\subseteq
[n]$ denote the indices of the {\em planes} where $\ewit$ differs from its closest
neighbor in $\mc{W}_1$. Since $e<d_1/2$, $E$ also denotes the set of columns
where slices $\ewit^i$ differ from their closest neighbors in $\mc{C}_1$. We
decode each slice seperately. Applying Lemma \ref{lem:bicdecoding} for each