Skip to content

Commit 2587299

Browse files
committed
Revised association contribution (#150)
* More generic association models * Rewrite association contribution to be more generic * Michael L. Michelsen to the rescue once again * Add hard-sphere theory guide * update parameter files * cleanup * add changelog
1 parent 9cd80cd commit 2587299

29 files changed

+879
-427
lines changed

CHANGELOG.md

+3
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,9 @@ The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
55
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
66

77
## [Unreleased]
8+
### Changed
9+
- Changed the internal implementation of the association contribution to accomodate more general association schemes. [#150](https://github.com/feos-org/feos/pull/150)
10+
- To comply with the new association implementation, the default values of `na` and `nb` are now `0` rather than `1`. Parameter files have been adapted accordingly. [#150](https://github.com/feos-org/feos/pull/150)
811

912
### Changed
1013
- Adjusted all models' implementation of the `Parameter` trait which now requires `Result`s in some methods. [#161](https://github.com/feos-org/feos/pull/161)
28.4 KB
Loading

docs/theory/models/association.md

+83
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,83 @@
1+
# Association
2+
The Helmholtz contribution due to short range attractive interaction ("association") in SAFT models can be conveniently expressed as
3+
4+
$$\frac{A^\mathrm{assoc}}{k_\mathrm{B}TV}=\sum_\alpha\rho_\alpha\left(\ln X_\alpha-\frac{X_\alpha}{2}+\frac{1}{2}\right)$$
5+
6+
Here, $\alpha$ is the index of all distinguishable **association sites** in the system. The site density $\rho_\alpha$ is the density of the segment or molecule on which the association site is located times the multiplicity of the site. The fraction of non-bonded association sites $X_\alpha$ is calculated implicitly from
7+
8+
$$\frac{1}{X_\alpha}=1+\sum_\beta\rho_\beta X_\beta\Delta^{\alpha\beta}$$ (eqn:x_assoc)
9+
10+
where $\Delta^{\alpha\beta}$ is the association strength between sites $\alpha$ and $\beta$. The exact expression for the association strength varies between different SAFT versions. We implement the expressions used in PC-SAFT but a generalization to other models is straightforward.
11+
12+
The number of degrees of freedom in the association strength matrix $\Delta$ is vast and for practical purposes it is useful to reduce the number of non-zero elements in $\Delta$. In $\text{FeO}_\text{s}$ we use 3 kinds of association sites: $A$, $B$ and $C$. Association sites of kind $A$ only associate with $B$ and vice versa, whereas association sites of kind $C$ only associate with other sites of kind $C$. By sorting the sites by their kind, the entire $\Delta$ matrix can be reduced to two smaller matrices: $\Delta^{AB}$ and $\Delta^{CC}$.
13+
14+
```{image} FeOs_Association.png
15+
:alt: Association strength matrix
16+
:class: bg-primary
17+
:width: 300px
18+
:align: center
19+
```
20+
21+
In practice, the $AB$ association can be linked to hydrogen bonding sites. The $CC$ association is less widely used but implemented to ensure that all the association schemes defined in [Huang and Radosz 1990](https://pubs.acs.org/doi/10.1021/ie00107a014) are covered.
22+
23+
## Calculation of the fraction of non-bonded association sites
24+
25+
The algorithm to solve the fraction of non-bonded sites for general association schemes follows [Michelsen 2006](https://pubs.acs.org/doi/full/10.1021/ie060029x). The problem is rewritten as an optimization problem with gradients
26+
27+
$$g_\alpha=\frac{1}{X_\alpha}-1-\sum_\beta\rho_\beta X_\beta\Delta^{\alpha\beta}$$
28+
29+
The analytic Hessian is
30+
31+
$$H_{\alpha\beta}=-\frac{\delta_{\alpha\beta}}{X_\alpha^2}-\rho_\beta\Delta^{\alpha\beta}$$
32+
33+
with the Kronecker delta $\delta_{\alpha\beta}$. However, [Michelsen 2006](https://pubs.acs.org/doi/full/10.1021/ie060029x) shows that it is beneficial to use
34+
35+
$$\hat{H}_{\alpha\beta}=-\frac{\delta_{\alpha\beta}}{X_\alpha}\left(1+\sum_\beta\rho_\beta X_\beta\Delta^{\alpha\beta}\right)-\rho_\beta\Delta^{\alpha\beta}$$
36+
37+
instead. $X_\alpha$ can then be solved robustly using a Newton algorithm with a check that ensures that the values of $X_\alpha$ remain positive. With the split in $AB$ and $CC$ association the two kinds different versions could be solved separately from each other. This is currently not implemented, because use cases are rare to nonexistent and the benefit is small.
38+
39+
A drastic improvement in performance, however, can be achieved by solving eq. {eq}`eqn:x_assoc` analytically for simple cases. If there is only one $A$ and one $B$ site the corresponding fractions of non-bonded association sites can be calculated from
40+
41+
$$X_A=\frac{2}{\sqrt{\left(1+\left(\rho_A-\rho_B\right)\Delta^{AB}\right)^2+4\rho_B\Delta^{AB}}+1+\left(\rho_B-\rho_A\right)\Delta^{AB}}$$
42+
$$X_B=\frac{2}{\sqrt{\left(1+\left(\rho_A-\rho_B\right)\Delta^{AB}\right)^2+4\rho_B\Delta^{AB}}+1+\left(\rho_A-\rho_B\right)\Delta^{AB}}$$
43+
44+
The specific form of the expressions (with the square root in the denominator) is particularly robust for cases where $\Delta$ and/or $\rho$ are small or even 0.
45+
46+
Analogously, for a single $C$ site, the expression becomes
47+
48+
$$X_C=\frac{2}{\sqrt{1+4\rho_C\Delta^{CC}}+1}$$
49+
50+
51+
## PC-SAFT expression for the association strength
52+
In $\text{FeO}_\text{s}$ every association site $\alpha$ is parametrized with the dimensionless association volume $\kappa^\alpha$ and the association energy $\varepsilon^\alpha$. The association strength between sites $\alpha$ and $\beta$ is then calculated from
53+
54+
$$\Delta^{\alpha\beta}=\left(\frac{1}{1-\zeta_3}+\frac{\frac{3}{2}d_{ij}\zeta_2}{\left(1-\zeta_3\right)^2}+\frac{\frac{1}{2}d_{ij}^2\zeta_2^2}{\left(1-\zeta_3\right)^3}\right)\sqrt{\sigma_i^3\kappa^\alpha\sigma_j^3\kappa^\beta}\left(e^{\frac{\varepsilon^\alpha+\varepsilon^\beta}{2k_\mathrm{B}T}}-1\right)$$
55+
56+
with
57+
58+
$$d_{ij}=\frac{2d_id_j}{d_i+d_j},~~~~d_k=\sigma_k\left(1-0.12e^{\frac{-3\varepsilon_k}{k_\mathrm{B}T}}\right)$$
59+
60+
and
61+
62+
$$\zeta_2=\frac{\pi}{6}\sum_k\rho_km_kd_k^2,~~~~\zeta_3=\frac{\pi}{6}\sum_k\rho_km_kd_k^3$$
63+
64+
The indices $i$, $j$ and $k$ are used to index molecules or segments rather than sites. $i$ and $j$ in particular refer to the molecule or segment that contain site $\alpha$ or $\beta$ respectively.
65+
66+
On their own the parameters $\kappa^\alpha$ and $\varepsilon^\beta$ have no physical meaning. For a pure system of self-associating molecules it is therefore natural to define $\kappa^A=\kappa^B\equiv\kappa^{A_iB_i}$ and $\varepsilon^A=\varepsilon^B\equiv\varepsilon^{A_iB_i}$ where $\kappa^{A_iB_i}$ and $\varepsilon^{A_iB_i}$ are now parameters describing the molecule rather than individual association sites. However, for systems that are not self-associating, the more generic parametrization is required.
67+
68+
## Helmholtz energy functional
69+
The Helmholtz energy contribution proposed by [Yu and Wu 2002](https://aip.scitation.org/doi/abs/10.1063/1.1463435) is used to model association in inhomogeneous systems. It uses the same weighted densities that are used in [Fundamental Measure Theory](hard_spheres) (the White-Bear version). The Helmholtz energy density is then calculated from
70+
71+
$$\beta f=\sum_\alpha\frac{n_0^\alpha\xi_i}{m_i}\left(\ln X_\alpha-\frac{X_\alpha}{2}+\frac{1}{2}\right)$$
72+
73+
with the equations for the fraction of non-bonded association sites adapted to
74+
75+
$$\frac{1}{X_\alpha}=1+\sum_\beta\frac{n_0^\beta\xi_j}{m_j}X_\beta\Delta^{\alpha\beta}$$
76+
77+
The association strength, again using the PC-SAFT parametrization, is
78+
79+
$$\Delta^{\alpha\beta}=\left(\frac{1}{1-n_3}+\frac{\frac{1}{4}d_{ij}n_2\xi}{\left(1-n_3\right)^2}+\frac{\frac{1}{72}d_{ij}^2n_2^2\xi}{\left(1-n_3\right)^3}\right)\sqrt{\sigma_i^3\kappa^\alpha\sigma_j^3\kappa^\beta}\left(e^{\frac{\varepsilon^\alpha+\varepsilon^\beta}{2k_\mathrm{B}T}}-1\right)$$
80+
81+
The quantities $\xi$ and $\xi_i$ were introduced to account for the effect of inhomogeneity and are defined as
82+
83+
$$\xi=1-\frac{\vec{n}_2\cdot\vec{n}_2}{n_2^2},~~~~\xi_i=1-\frac{\vec{n}_2^i\cdot\vec{n}_2^i}{{n_2^i}^2}$$

docs/theory/models/hard_spheres.md

+57
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,57 @@
1+
# Hard spheres
2+
3+
$\text{FeO}_\text{s}$ provides an implementation of the Boublík-Mansoori-Carnahan-Starling-Leland (BMCSL) equation of state ([Boublík, 1970](https://doi.org/10.1063/1.1673824), [Mansoori et al., 1971](https://doi.org/10.1063/1.1675048)) for hard-sphere mixtures which is often used as reference contribution in SAFT equations of state. The implementation is generalized to allow the description of non-sperical or fused-sphere reference fluids.
4+
5+
The reduced Helmholtz energy density is calculated according to
6+
7+
$$\frac{\beta A}{V}=\frac{6}{\pi}\left(\frac{3\zeta_1\zeta_2}{1-\zeta_3}+\frac{\zeta_2^3}{\zeta_3\left(1-\zeta_3\right)^2}+\left(\frac{\zeta_2^3}{\zeta_3^2}-\zeta_0\right)\ln\left(1-\zeta_3\right)\right)$$
8+
9+
with the packing fractions
10+
11+
$$\zeta_k=\frac{\pi}{6}\sum_\alpha C_{k,\alpha}\rho_\alpha d_\alpha^k,~~~~~~~~k=0\ldots 3$$
12+
13+
The geometry coefficients $C_{k,\alpha}$ and the segment diameters $d_\alpha$ depend on the context in which the model is used. The following table shows how the expression can be reused in various models. For details on the fused-sphere chain model, check the [repository](https://github.com/feos-org/feos-fused-chains) or the [publication](https://doi.org/10.1103/PhysRevE.105.034110).
14+
15+
||Hard spheres|PC-SAFT|Fused-sphere chains|
16+
|-|:-:|:-:|:-:|
17+
|$d_\alpha$|$\sigma_\alpha$|$\sigma_\alpha\left(1-0.12e^{\frac{-3\varepsilon_\alpha}{k_\mathrm{B}T}}\right)$|$\sigma_\alpha$|
18+
|$C_{0,\alpha}$|$1$|$m_\alpha$|$1$|
19+
|$C_{1,\alpha}$|$1$|$m_\alpha$|$A_\alpha^*$|
20+
|$C_{1,\alpha}$|$1$|$m_\alpha$|$A_\alpha^*$|
21+
|$C_{1,\alpha}$|$1$|$m_\alpha$|$V_\alpha^*$|
22+
23+
## Fundamental measure theory
24+
25+
An model for inhomogeneous mixtues of hard spheres is provided by fundamental measure theory (FMT, [Rosenfeld, 1989](https://doi.org/10.1103/PhysRevLett.63.980)). Different variants have been proposed of which only those that are consistent with the BMCSL equation of state in the homogeneous limit are currently considered in $\text{FeO}_\text{s}$ (exluding, e.g., the original Rosenfeld and White-Bear II variants).
26+
27+
The Helmholtz energy density is calculated according to
28+
29+
$$\beta f=-n_0\ln\left(1-n_3\right)+\frac{n_{12}}{1-n_3}+\frac{1}{36\pi}n_2n_{22}f_3(n_3)$$
30+
31+
The expressions for $n_{12}$ and $n_{22}$ depend on the FMT version.
32+
33+
|version|$n_{12}$|$n_{22}$|references|
34+
|-|:-:|:-:|:-:|
35+
|WhiteBear|$n_1n_2-\vec n_1\cdot\vec n_2$|$n_2^2-3\vec n_2\cdot\vec n_2$|[Roth et al., 2002](https://doi.org/10.1088/0953-8984/14/46/313), [Yu and Wu, 2002](https://doi.org/10.1063/1.1520530)|
36+
|KierlikRosinberg|$n_1n_2$|$n_2^2$|[Kierlik and Rosinberg, 1990](https://doi.org/10.1103/PhysRevA.42.3382)|
37+
|AntiSymWhiteBear|$n_1n_2-\vec n_1\cdot\vec n_2$|$n_2^2\left(1-\frac{\vec n_2\cdot\vec n_2}{n_2^2}\right)^3$|[Rosenfeld et al., 1997](https://doi.org/10.1103/PhysRevE.55.4245), [Kessler et al., 2021](https://doi.org/10.1016/j.micromeso.2021.111263)|
38+
39+
For small $n_3$, the value of $f(n_3)$ numerically diverges. Therefore, it is approximated with a Taylor expansion.
40+
41+
$$f_3=\begin{cases}\frac{n_3+\left(1-n_3\right)^2\ln\left(1-n_3\right)}{n_3^2\left(1-n_3\right)^2}&\text{if }n_3>10^{-5}\\
42+
\frac{3}{2}+\frac{8}{3}n_3+\frac{15}{4}n_3^2+\frac{24}{5}n_3^3+\frac{35}{6}n_3^4&\text{else}\end{cases}$$
43+
44+
The weighted densities $n_k(\mathbf{r})$ are calculated by convolving the density profiles $\rho_\alpha(\mathbf{r})$ with weight functions $\omega_k^\alpha(\mathbf{r})$
45+
46+
$$n_k(\mathbf{r})=\sum_\alpha n_k^\alpha(\mathbf{r})=\sum_\alpha\int\rho_\alpha(\mathbf{r}')\omega_k^\alpha(\mathbf{r}-\mathbf{r}')\mathrm{d}\mathbf{r}'$$
47+
48+
which differ between the different FMT versions.
49+
50+
||WhiteBear/AntiSymWhiteBear|KierlikRosinberg|
51+
|-|:-:|:-:|
52+
|$\omega_0^\alpha(\mathbf{r})$|$\frac{C_{0,\alpha}}{\pi\sigma_\alpha^2}\,\delta\!\left(\frac{d_\alpha}{2}-\|\mathbf{r}\|\right)$|$C_{0,\alpha}\left(-\frac{1}{8\pi}\,\delta''\!\left(\frac{d_\alpha}{2}-\|\mathbf{r}\|\right)+\frac{1}{2\pi\|\mathbf{r}\|}\,\delta'\!\left(\frac{d_\alpha}{2}-\|\mathbf{r}\|\right)\right)$|
53+
|$\omega_1^\alpha(\mathbf{r})$|$\frac{C_{1,\alpha}}{2\pi\sigma_\alpha}\,\delta\!\left(\frac{d_\alpha}{2}-\|\mathbf{r}\|\right)$|$\frac{C_{1,\alpha}}{8\pi}\,\delta'\!\left(\frac{d_\alpha}{2}-\|\mathbf{r}\|\right)$|
54+
|$\omega_2^\alpha(\mathbf{r})$|$C_{2,\alpha}\,\delta\!\left(\frac{d_\alpha}{2}-\|\mathbf{r}\|\right)$|$C_{2,\alpha}\,\delta\!\left(\frac{d_\alpha}{2}-\|\mathbf{r}\|\right)$|
55+
|$\omega_3^\alpha(\mathbf{r})$|$C_{3,\alpha}\,\Theta\!\left(\frac{d_\alpha}{2}-\|\mathbf{r}\|\right)$|$C_{3,\alpha}\,\Theta\!\left(\frac{d_\alpha}{2}-\|\mathbf{r}\|\right)$|
56+
|$\vec\omega_1^\alpha(\mathbf{r})$|$C_{3,\alpha}\frac{\mathbf{r}}{2\pi\sigma_\alpha\|\mathbf{r}\|}\,\delta\!\left(\frac{d_\alpha}{2}-\|\mathbf{r}\|\right)$|-|
57+
|$\vec\omega_2^\alpha(\mathbf{r})$|$C_{3,\alpha}\frac{\mathbf{r}}{\|\mathbf{r}\|}\,\delta\!\left(\frac{d_\alpha}{2}-\|\mathbf{r}\|\right)$|-|

docs/theory/models/index.md

+3
Original file line numberDiff line numberDiff line change
@@ -6,4 +6,7 @@ It is currently still under construction. You can help by [contributing](https:/
66
```{eval-rst}
77
.. toctree::
88
:maxdepth: 1
9+
10+
hard_spheres
11+
association
912
```

parameters/pcsaft/gross2002.json

+54-18
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,9 @@
1313
"sigma": 3.23,
1414
"epsilon_k": 188.9,
1515
"kappa_ab": 0.035176,
16-
"epsilon_k_ab": 2899.5
16+
"epsilon_k_ab": 2899.5,
17+
"na": 1.0,
18+
"nb": 1.0
1719
},
1820
"molarweight": 32.042
1921
},
@@ -31,7 +33,9 @@
3133
"sigma": 3.1771,
3234
"epsilon_k": 198.24,
3335
"kappa_ab": 0.032384,
34-
"epsilon_k_ab": 2653.4
36+
"epsilon_k_ab": 2653.4,
37+
"na": 1.0,
38+
"nb": 1.0
3539
},
3640
"molarweight": 46.069
3741
},
@@ -49,7 +53,9 @@
4953
"sigma": 3.2522,
5054
"epsilon_k": 233.4,
5155
"kappa_ab": 0.015268,
52-
"epsilon_k_ab": 2276.8
56+
"epsilon_k_ab": 2276.8,
57+
"na": 1.0,
58+
"nb": 1.0
5359
},
5460
"molarweight": 60.096
5561
},
@@ -67,7 +73,9 @@
6773
"sigma": 3.6139,
6874
"epsilon_k": 259.59,
6975
"kappa_ab": 0.006692,
70-
"epsilon_k_ab": 2544.6
76+
"epsilon_k_ab": 2544.6,
77+
"na": 1.0,
78+
"nb": 1.0
7179
},
7280
"molarweight": 74.123
7381
},
@@ -85,7 +93,9 @@
8593
"sigma": 3.4508,
8694
"epsilon_k": 247.28,
8795
"kappa_ab": 0.010319,
88-
"epsilon_k_ab": 2252.1
96+
"epsilon_k_ab": 2252.1,
97+
"na": 1.0,
98+
"nb": 1.0
8999
},
90100
"molarweight": 88.15
91101
},
@@ -103,7 +113,9 @@
103113
"sigma": 3.6735,
104114
"epsilon_k": 262.32,
105115
"kappa_ab": 0.005747,
106-
"epsilon_k_ab": 2538.9
116+
"epsilon_k_ab": 2538.9,
117+
"na": 1.0,
118+
"nb": 1.0
107119
},
108120
"molarweight": 102.177
109121
},
@@ -121,7 +133,9 @@
121133
"sigma": 3.545,
122134
"epsilon_k": 253.46,
123135
"kappa_ab": 0.001155,
124-
"epsilon_k_ab": 2878.5
136+
"epsilon_k_ab": 2878.5,
137+
"na": 1.0,
138+
"nb": 1.0
125139
},
126140
"molarweight": 116.203
127141
},
@@ -139,7 +153,9 @@
139153
"sigma": 3.7145,
140154
"epsilon_k": 262.74,
141155
"kappa_ab": 0.002197,
142-
"epsilon_k_ab": 2754.8
156+
"epsilon_k_ab": 2754.8,
157+
"na": 1.0,
158+
"nb": 1.0
143159
},
144160
"molarweight": 130.23
145161
},
@@ -157,7 +173,9 @@
157173
"sigma": 3.7292,
158174
"epsilon_k": 263.64,
159175
"kappa_ab": 0.001427,
160-
"epsilon_k_ab": 2941.9
176+
"epsilon_k_ab": 2941.9,
177+
"na": 1.0,
178+
"nb": 1.0
161179
},
162180
"molarweight": 144.257
163181
},
@@ -175,7 +193,9 @@
175193
"sigma": 3.2085,
176194
"epsilon_k": 208.42,
177195
"kappa_ab": 0.024675,
178-
"epsilon_k_ab": 2253.9
196+
"epsilon_k_ab": 2253.9,
197+
"na": 1.0,
198+
"nb": 1.0
179199
},
180200
"molarweight": 60.096
181201
},
@@ -193,7 +213,9 @@
193213
"sigma": 3.9053,
194214
"epsilon_k": 266.01,
195215
"kappa_ab": 0.001863,
196-
"epsilon_k_ab": 2618.8
216+
"epsilon_k_ab": 2618.8,
217+
"na": 1.0,
218+
"nb": 1.0
197219
},
198220
"molarweight": 88.15
199221
},
@@ -211,7 +233,9 @@
211233
"sigma": 3.0007,
212234
"epsilon_k": 366.51,
213235
"kappa_ab": 0.034868,
214-
"epsilon_k_ab": 2500.7
236+
"epsilon_k_ab": 2500.7,
237+
"na": 1.0,
238+
"nb": 1.0
215239
},
216240
"molarweight": 18.015
217241
},
@@ -229,7 +253,9 @@
229253
"sigma": 2.8906,
230254
"epsilon_k": 214.94,
231255
"kappa_ab": 0.095103,
232-
"epsilon_k_ab": 684.3
256+
"epsilon_k_ab": 684.3,
257+
"na": 1.0,
258+
"nb": 1.0
233259
},
234260
"molarweight": 31.06
235261
},
@@ -247,7 +273,9 @@
247273
"sigma": 3.1343,
248274
"epsilon_k": 221.53,
249275
"kappa_ab": 0.017275,
250-
"epsilon_k_ab": 854.7
276+
"epsilon_k_ab": 854.7,
277+
"na": 1.0,
278+
"nb": 1.0
251279
},
252280
"molarweight": 45.09
253281
},
@@ -265,7 +293,9 @@
265293
"sigma": 3.5347,
266294
"epsilon_k": 250.52,
267295
"kappa_ab": 0.022674,
268-
"epsilon_k_ab": 1028.1
296+
"epsilon_k_ab": 1028.1,
297+
"na": 1.0,
298+
"nb": 1.0
269299
},
270300
"molarweight": 59.11
271301
},
@@ -283,7 +313,9 @@
283313
"sigma": 3.4777,
284314
"epsilon_k": 231.8,
285315
"kappa_ab": 0.02134,
286-
"epsilon_k_ab": 932.2
316+
"epsilon_k_ab": 932.2,
317+
"na": 1.0,
318+
"nb": 1.0
287319
},
288320
"molarweight": 59.11
289321
},
@@ -301,7 +333,9 @@
301333
"sigma": 3.7021,
302334
"epsilon_k": 335.47,
303335
"kappa_ab": 0.074883,
304-
"epsilon_k_ab": 1351.6
336+
"epsilon_k_ab": 1351.6,
337+
"na": 1.0,
338+
"nb": 1.0
305339
},
306340
"molarweight": 93.13
307341
},
@@ -319,7 +353,9 @@
319353
"sigma": 3.8582,
320354
"epsilon_k": 211.59,
321355
"kappa_ab": 0.07555,
322-
"epsilon_k_ab": 3044.4
356+
"epsilon_k_ab": 3044.4,
357+
"na": 1.0,
358+
"nb": 1.0
323359
},
324360
"molarweight": 60.053
325361
}

parameters/pcsaft/loetgeringlin2015_homo.json

+4
Original file line numberDiff line numberDiff line change
@@ -277,6 +277,8 @@
277277
"epsilon_k": 488.66,
278278
"epsilon_k_ab": 2517.0,
279279
"kappa_ab": 0.006825,
280+
"na": 1.0,
281+
"nb": 1.0,
280282
"viscosity": [
281283
-15.7583e-3,
282284
-2.5654e-1,
@@ -294,6 +296,8 @@
294296
"epsilon_k": 467.59,
295297
"epsilon_k_ab": 1064.6,
296298
"kappa_ab": 0.026662,
299+
"na": 1.0,
300+
"nb": 1.0,
297301
"viscosity": [
298302
-4.4048e-3,
299303
-0.6089e-1,

0 commit comments

Comments
 (0)