-
Notifications
You must be signed in to change notification settings - Fork 89
/
Copy pathnew.txt
164 lines (115 loc) · 6.88 KB
/
new.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
1. ##### **Model Interpretability**
* Model Respecification
Protected Values Prediction
Model Constraints
Hyperparameter Modelling
Interpretable Model
Global Explanations
Level Two Monotonicity Feature Explanations
* Quantitative Validation
Level Two Monotonicity
Relationship Analysis
Partial Dependence (LV1) Monotonicity
Feature Interaction
Metrics
1. ##### **Model Robustness**
* Residual Deviation
* Residual Explanations
* Benchmark Competition
* Adversarial Attack
1. ##### **Regulatory Fairness**
* Group
Disparate Error Analysis
Parity Indicators
Fair Lending Measures
Model Agnostic Processing
Reweighing Preprocessing
Disparate Impact Preprocessing
Calibrate Equalized Odds
Feature Decomposition
* Individual
1. Reasoning
* Individual Disparity
* Reasoning Codes
1. Example Based
* Prototypical
* Counterfactual
* Contrastive
#### [Table Processing](#scrollTo=VO6NxvYjofas&line=1&uniqifier=1)
- [Configure Pandas](#configure-pandas)
- [Data Frame Formatting](#data-frame-formatting)
- [Data Frames for Testing](#data-frames-for-testing)
- [Lower Case Columns](#lower-case-columns)
- [Front and Back Column Selection](#front-and-back-columns)
- [Fast Data Frame Split](#fast-data-frame-split)
- [Create Features and Labels List](#create-features-and-labels-list)
- [Short Basic Commands](#short-basic-commands)
- [Read Commands](#read-commands)
- [Create Ordered Categories](#create-ordered-categories)
- [Select Columns Based on Regex](#select-columns-based-on-regex)
- [Accessing Group of Groupby Object](#accessing-group-of-groupby-object)
- [Multiple External Selection Criteria](#multiple-external-selection-criteria)
- [Memory Reduction Script](#memory-reduction-script)
- [Verify Primary Key](#verify-primary-key)
- [Shift Columns to Front](#shift-columns-to-front)
- [Multiple Column Assignment](#multiple-column-assignment)
- [Method Changing Technique](#method-chaning-event)
- [Load Multiple Files](#load-multiple-files)
- [Drop Rows and Column Substring](#drop-rows-and-column-substring)
- [Explode a Column](#explode-a-column)
- [Nest List Back into Column](#nest-list-back-into-column)
- [Split Cells with List](#split-cells-with-list)
#### [Table Exploration](#table-exploration)
- [Groupby Functionality](#groupby-functionality)
- [Cross Correlation Series Without Duplicates](#cross-correlation-series-without-duplicates)
- [Missing Data Report](#missing-data-report)
- [Duplicated Rows Report](#duplicated-rows-report)
- [Skewness](#skewness)
#### [Feature Processing](#feature-processing)
- [Replace Infrequently Occurring Categories](#replace-infrequently-occuring-categories)
- [Quasi-Constant Feature Detection](#quasi-constant-feature-detection)
- [Filling Missing Values Separately](#filling-missing-values-separately)
- [Conditioned Column Value Replacement](#conditioned-column-value-replacement)
- [Remove Non-numeric Values in Data Frame](#remove-non-numeric-values-in-data-frame)
- [Feature Scaling, Normalisation, Standardisation](#feature-scaling-normalisation-standardisation)
#### [Feature Engineering](#feature-engineering)
- [Automated Dummy Encoding](#automate-dummy-encodings)
- [Binarise Empty Columns](#binarise-empty-columns)
- [Polynomials](#polynomials)
- [Transformations](#transformations)
- [Genetic Programming](#genetic-programming)
- [Principal Component](#principal-component)
- [Multiple Lags](#multiple-lags)
- [Multiple Rolling](#multiple-rolling)
- [Date Features](#data-features)
- [Haversine Distance](#havervsine-distance)
- [Parse Address](#parse-address)
- [Processing Strings in Pandas](#processing-strings-in-pandas)
- [Filtering Strings in Pandas](#filtering-strings-in-pandas)
#### [Model Validation](#scrollTo=VO6NxvYjofas&line=1&uniqifier=1)
- [Classification Metrics](#classification-metrics)
I currently have you listed as a potential contributing member to Medium FirmAI.Is this something you would be interested in? For contributors - https://medium.com/firmai/example-3a-short-format-bulletin-7cbd94d8754c
. Our first publications would be from Vasant Dhar and Foster Provost. Is this something you would be interested in? For contributors - https://medium.com/firmai/example-3a-short-format-bulletin-7cbd94d8754c and for quality examples https://medium.com/@derek_snow/quality-post-examples-f52a887ecb35
I currently have you listed as a potential contributing member to Medium FirmAI. Is this something you would be interested in? Contributing Fields - https://medium.com/firmai/example-3a-short-format-bulletin-7cbd94d8754c - Our first contributors are Vasant Dhar, Foster Provost, and Isil Erel.
Hi, I listed you as a potential contributor to Medium FirmAI. Is this something you would be interested in? Contributing Fields - https://medium.com/firmai/example-3a-short-format-bulletin-7cbd94d8754c - Our first contributors are Vasant Dhar, Foster Provost, and Isil Erel; starting 4 May.
#### overall performance
'Prevalence ': '(tp + fn) / (tp + tn +fp + fn)', # how much default actually happens for this group
#'Adverse Impact': '(tp + fp) / (tp + tn + fp + fn)', # how often the model predicted default for each group
'Accuracy ': '(tp + tn) / (tp + tn + fp + fn)', # how often the model predicts default and non-default correctly for this group
#### predicting default will happen
# (correctly)
'True Positive Rate ': 'tp / (tp + fn)', # out of the people in the group *that did* default, how many the model predicted *correctly* would default
'Precision ': 'tp / (tp + fp)', # out of the people in the group the model *predicted* would default, how many the model predicted *correctly* would default
#### predicting default won't happen
# (correctly)
'Specificity ': 'tn / (tn + fp)', # out of the people in the group *that did not* default, how many the model predicted *correctly* would not default
'Negative Predicted Value ': 'tn / (tn + fn)', # out of the people in the group the model *predicted* would not default, how many the model predicted *correctly* would not default
#### analyzing errors - type I
# false accusations
'False Positive Rate ': 'fp / (tn + fp)', # out of the people in the group *that did not* default, how many the model predicted *incorrectly* would default
'False Discovery Rate ': 'fp / (tp + fp)', # out of the people in the group the model *predicted* would default, how many the model predicted *incorrectly* would default
#### analyzing errors - type II
# costly ommisions
'False Negative Rate ': 'fn / (tp + fn)', # out of the people in the group *that did* default, how many the model predicted *incorrectly* would not default
'False Omissions Rate ':'fn / (tn + fn)' # out of the people in the group the model *predicted* would not default, how many the model predicted *incorrectly* would not default
}