-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathmain.lua
389 lines (308 loc) · 12.4 KB
/
main.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
require 'torch'
require 'nn'
require 'optim'
opt = {
dataset = 'folder',
batchSize = 128,
loadSize = 64,
fineSize = 64,
ngf = 96, -- # of gen filters in first conv layer
ndf = 96, -- # of discrim filters in first conv layer
nThreads = 4, -- # of data loading threads to use
niter = 25, -- # of iter at starting learning rate
lr = 0.0002, -- initial learning rate for adam
beta1 = 0.5, -- momentum term of adam
ntrain = math.huge, -- # of examples per epoch. math.huge for full dataset
display = 1, -- display samples while training. 0 = false
display_id = 10, -- display window id.
gpu = 1, -- gpu = 0 is CPU mode. gpu=X is GPU mode on GPU X
name = 'experiment1',
noise = 'normal', -- uniform / normal
optimizer = 'sgd',
load_cp = 0,
}
-- one-line argument parser. parses enviroment variables to override the defaults
for k,v in pairs(opt) do opt[k] = tonumber(os.getenv(k)) or os.getenv(k) or opt[k] end
print(opt)
if opt.display == 0 then opt.display = false end
torch.setdefaulttensortype('torch.FloatTensor')
paths.dofile('data.lua')
smn = torch.sum(mn)
----------------------------------------------------------------------------
local function weights_init(m)
local name = torch.type(m)
if name:find('Convolution') then
m.weight:normal(0.0, 0.02)
m:noBias()
elseif name:find('BatchNormalization') then
if m.weight then m.weight:normal(1.0, 0.02) end
if m.bias then m.bias:fill(0) end
end
end
local nc = 3
local nz = opt.nz
local ndf = opt.ndf
local ngf = opt.ngf
local real_label = 1
local fake_label = 0
local SpatialBatchNormalization = nn.SpatialBatchNormalization
local SpatialConvolution = nn.SpatialConvolution
local SpatialFullConvolution = nn.SpatialFullConvolution
local netG = nn.Sequential()
-- input is (nc) x 64 x 64
netG:add(SpatialConvolution(nc, ngf, 4, 4, 2, 2, 1, 1))
netG:add(nn.LeakyReLU(0.2, true))
-- state size: (ngf) x 32 x 32
netG:add(SpatialConvolution(ngf, ngf * 2, 4, 4, 2, 2, 1, 1))
netG:add(SpatialBatchNormalization(ngf * 2)):add(nn.LeakyReLU(0.2, true))
-- state size: (ngf*2) x 16 x 16
netG:add(SpatialConvolution(ngf * 2, ngf * 4, 4, 4, 2, 2, 1, 1))
netG:add(SpatialBatchNormalization(ngf * 4)):add(nn.LeakyReLU(0.2, true))
-- state size: (ngf*4) x 8 x 8
netG:add(SpatialConvolution(ngf * 4, ngf * 8, 4, 4, 2, 2, 1, 1))
netG:add(SpatialBatchNormalization(ngf * 8)):add(nn.LeakyReLU(0.2, true))
-- state size: (ngf*8) x 4 x 4
-- netG:add(SpatialConvolution(ngf * 8, ngf * 16, 4, 4, 2, 2, 1, 1))
-- netG:add(SpatialBatchNormalization(ndf * 16)):add(nn.LeakyReLU(0.2, true))
-- state size: (ngf*16) x 2 x 2
-- netG:add(SpatialFullConvolution(ngf*16, ngf * 8, 4, 4))
-- netG:add(SpatialBatchNormalization(ngf * 8)):add(nn.ReLU(true))
-- state size: (ngf*8) x 4 x 4
netG:add(SpatialFullConvolution(ngf * 8, ngf * 4, 4, 4, 2, 2, 1, 1))
netG:add(SpatialBatchNormalization(ngf * 4)):add(nn.ReLU(true))
-- state size: (ngf*4) x 8 x 8
netG:add(SpatialFullConvolution(ngf * 4, ngf * 2, 4, 4, 2, 2, 1, 1))
netG:add(SpatialBatchNormalization(ngf * 2)):add(nn.ReLU(true))
-- state size: (ngf*2) x 16 x 16
netG:add(SpatialFullConvolution(ngf * 2, ngf, 4, 4, 2, 2, 1, 1))
netG:add(SpatialBatchNormalization(ngf)):add(nn.ReLU(true))
-- state size: (ngf) x 32 x 32
netG:add(SpatialFullConvolution(ngf, nc, 4, 4, 2, 2, 1, 1))
netG:add(nn.Tanh())
-- state size: (nc) x 64 x 64
netG:apply(weights_init)
local netD = nn.Sequential()
-- input is (nc) x 64 x 64
netD:add(SpatialConvolution(nc, ndf, 4, 4, 2, 2, 1, 1))
netD:add(nn.LeakyReLU(0.2, true))
-- state size: (ndf) x 32 x 32
netD:add(SpatialConvolution(ndf, ndf * 2, 4, 4, 2, 2, 1, 1))
netD:add(SpatialBatchNormalization(ndf * 2)):add(nn.LeakyReLU(0.2, true))
-- state size: (ndf*2) x 16 x 16
netD:add(SpatialConvolution(ndf * 2, ndf * 4, 4, 4, 2, 2, 1, 1))
netD:add(SpatialBatchNormalization(ndf * 4)):add(nn.LeakyReLU(0.2, true))
-- state size: (ndf*4) x 8 x 8
netD:add(SpatialConvolution(ndf * 4, ndf * 8, 4, 4, 2, 2, 1, 1))
netD:add(SpatialBatchNormalization(ndf * 8)):add(nn.LeakyReLU(0.2, true))
-- state size: (ndf*8) x 4 x 4
netD:add(SpatialConvolution(ndf * 8, 1, 4, 4))
netD:add(nn.Sigmoid())
-- state size: 1 x 1 x 1
netD:add(nn.View(1):setNumInputDims(3))
-- state size: 1
netD:apply(weights_init)
local netA = nn.Sequential()
-- input is (nc*2) x 64 x 64
netA:add(SpatialConvolution(nc*2, ndf, 4, 4, 2, 2, 1, 1))
netA:add(nn.LeakyReLU(0.2, true))
-- state size: (ndf) x 32 x 32
netA:add(SpatialConvolution(ndf, ndf * 2, 4, 4, 2, 2, 1, 1))
netA:add(SpatialBatchNormalization(ndf * 2)):add(nn.LeakyReLU(0.2, true))
-- state size: (ndf*2) x 16 x 16
netA:add(SpatialConvolution(ndf * 2, ndf * 4, 4, 4, 2, 2, 1, 1))
netA:add(SpatialBatchNormalization(ndf * 4)):add(nn.LeakyReLU(0.2, true))
-- state size: (ndf*4) x 8 x 8
netA:add(SpatialConvolution(ndf * 4, ndf * 8, 4, 4, 2, 2, 1, 1))
netA:add(SpatialBatchNormalization(ndf * 8)):add(nn.LeakyReLU(0.2, true))
-- state size: (ndf*8) x 4 x 4
netA:add(SpatialConvolution(ndf * 8, 1, 4, 4))
netA:add(nn.Sigmoid())
-- state size: 1 x 1 x 1
netA:add(nn.View(1):setNumInputDims(3))
-- state size: 1
netA:apply(weights_init)
local criterion = nn.BCECriterion()
print('netG:',netG)
print('netA:',netA)
print('netD:',netD)
if opt.load_cp > 0 then
epoch = opt.load_cp
require 'cunn'
require 'cudnn'
netG = torch.load('checkpoints/' .. opt.name .. '_' .. epoch .. '_net_G.t7')
netD = torch.load('checkpoints/' .. opt.name .. '_' .. epoch .. '_net_D.t7')
netA = torch.load('checkpoints/' .. opt.name .. '_' .. epoch .. '_net_A.t7')
end
local epoch_tm = torch.Timer()
local tm = torch.Timer()
local data_tm = torch.Timer()
local input_img = torch.Tensor(opt.batchSize, 3, opt.fineSize, opt.fineSize)
local ass_label = torch.Tensor(opt.batchSize, 3, opt.fineSize, opt.fineSize)
local noass_label = torch.Tensor(opt.batchSize, 3, opt.fineSize, opt.fineSize)
local label = torch.Tensor(opt.batchSize, 1)
if opt.gpu > 0 then
require 'cunn'
cutorch.setDevice(opt.gpu)
input_img = input_img:cuda()
ass_label = ass_label:cuda()
noass_label = noass_label:cuda()
label = label:cuda()
if pcall(require, 'cudnn') then
require 'cudnn'
cudnn.benchmark = true
cudnn.convert(netG, cudnn)
cudnn.convert(netD, cudnn)
cudnn.convert(netA, cudnn)
end
netD:cuda();
netG:cuda();
netA:cuda();
criterion:cuda();
end
local parametersD, gradParametersD = netD:getParameters()
local parametersA, gradParametersA = netA:getParameters()
local parametersG, gradParametersG = netG:getParameters()
local function load_data()
data_tm:reset(); data_tm:resume()
local batch = getbatch()
input_img:copy(batch[{{},3}])
ass_label:copy(batch[{{},1}])
noass_label:copy(batch[{{},2}])
data_tm:stop()
end
-- create closure to evaluate f(X) and df/dX of discriminator
local fDx = function(x)
gradParametersD:zero()
-- train with real
label:fill(real_label)
local output = netD:forward(ass_label)
local errD_real1 = criterion:forward(output, label)
local df_do = criterion:backward(output, label)
netD:backward(ass_label, df_do)
-- train with real (not associated)
label:fill(real_label)
local output = netD:forward(noass_label)
local errD_real2 = criterion:forward(output, label)
local df_do = criterion:backward(output, label)
netD:backward(noass_label, df_do)
-- train with fake
local fake = netG:forward(input_img)
label:fill(fake_label)
local output = netD:forward(fake)
local errD_fake = criterion:forward(output, label)
local df_do = criterion:backward(output, label)
netD:backward(fake, df_do)
errD = (errD_real1 + errD_real2 + errD_fake)/3
return errD, gradParametersD:mul(1/3)
end
-- create closure to evaluate f(X) and df/dX of domain discriminator
local fAx = function(x)
gradParametersA:zero()
local assd = torch.cat(input_img, ass_label, 2)
local noassd = torch.cat(input_img, noass_label, 2)
local fake = netG:forward(input_img)
local faked = torch.cat(input_img, fake, 2)
-- train with associated
label:fill(real_label)
local output = netA:forward(assd)
local errA_real1 = criterion:forward(output, label)
local df_do = criterion:backward(output, label)
netA:backward(assd, df_do)
-- train with not associated
label:fill(fake_label)
local output = netA:forward(noassd)
local errA_real2 = criterion:forward(output, label)
local df_do = criterion:backward(output, label)
netA:backward(noassd, df_do)
-- train with fake
label:fill(fake_label)
local output = netA:forward(faked)
local errA_fake = criterion:forward(output, label)
local df_do = criterion:backward(output, label)
netA:backward(faked, df_do)
errA = (errA_real1 + errA_real2 + errA_fake)/3
return errA, gradParametersA:mul(1/3)
end
-- create closure to evaluate f(X) and df/dX of generator
local fGx = function(x)
gradParametersG:zero()
--[[ the three lines below were already executed in fDx, so save computation
local fake = netG:forward(noise)
input:copy(fake) ]]--
local fake = netG:forward(input_img)
local output = netD:forward(fake)
label:fill(real_label) -- fake labels are real for generator cost
errGD = criterion:forward(output, label)
local df_do = criterion:backward(output, label)
local df_dg = netD:updateGradInput(fake, df_do)
netG:backward(input_img, df_dg)
local faked = torch.cat(input_img, fake, 2)
local output = netA:forward(faked)
label:fill(real_label) -- fake labels are real for generator cost
errGA = criterion:forward(output, label)
local df_do = criterion:backward(output, label)
local df_dg2 = netA:updateGradInput(faked, df_do)
-- print(df_dg2:size())
local df_dg = df_dg2[{{},{4,6}}]
-- print(df_dg:size())
netG:backward(input_img, df_dg)
errG = (errGA + errGD)/2
return errG, gradParametersG:mul(1/2)
end
if opt.display then disp = require 'display' end
if opt.optimizer == 'adam'
then optimizer = optim.adam
else optimizer = optim.sgd
end
result = {}
local disp_config = {
title = "error over time",
labels = {"samples", "errD", "errG", "errA"},
ylabel = "error",
win=opt.display_id*2,
}
-- train
for epoch = opt.load_cp + 1, opt.load_cp + opt.niter do
epoch_tm:reset()
local counter = 0
for i = 1, smn, opt.batchSize do
tm:reset()
load_data()
-- (0) Update D network
optimizer(fDx, parametersD, optimStateD)
-- (1) Update A network
optimizer(fAx, parametersA, optimStateA)
-- (2) Update G network
optimizer(fGx, parametersG, optimStateG)
-- display
counter = counter + 1
if counter % 20 == 0 and opt.display then
local fake = netG:forward(input_img)
local real = ass_label
disp.image(torch.cat(fake,real,3):cat(input_img,3), {win=opt.display_id, title=opt.name})
end
-- logging
if ((i-1) / opt.batchSize) % 10 == 0 then
print(('Epoch: [%d][%8d / %8d]\t Time: %.3f DataTime: %.3f '
.. ' Err_G: %.4f Err_D: %.4f Err_A: %.4f'):format(
epoch, ((i-1) / opt.batchSize),
math.floor(smn / opt.batchSize),
tm:time().real, data_tm:time().real,
errG and errG or -1, errD and errD or -1, errA and errA or -1))
table.insert(result, {i + smn*(epoch-1), errD, errG, errA})
disp.plot(result, disp_config)
end
end
paths.mkdir('checkpoints')
parametersD, gradParametersD = nil, nil -- nil them to avoid spiking memory
parametersA, gradParametersA = nil, nil -- nil them to avoid spiking memory
parametersG, gradParametersG = nil, nil
torch.save('checkpoints/' .. opt.name .. '_' .. epoch .. '_net_G.t7', netG:clearState())
torch.save('checkpoints/' .. opt.name .. '_' .. epoch .. '_net_D.t7', netD:clearState())
torch.save('checkpoints/' .. opt.name .. '_' .. epoch .. '_net_A.t7', netA:clearState())
parametersD, gradParametersD = netD:getParameters() -- reflatten the params and get them
parametersA, gradParametersA = netA:getParameters()
parametersG, gradParametersG = netG:getParameters()
print(('End of epoch %d / %d \t Time Taken: %.3f'):format(
epoch, opt.niter, epoch_tm:time().real))
end