This repository was archived by the owner on Jan 10, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtest.py
75 lines (67 loc) · 3.79 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Script to save the full outputs of a layered neural renderer (LNR).
Once you have trained the LNR with train.py, you can use this script to save the model's final layer decomposition.
It will load a saved model from '--checkpoints_dir' and save the results to '--results_dir'.
It first creates a model and dataset given the options. It will hard-code some parameters.
It then runs inference for '--num_test' images and save results to an HTML file.
Example (You need to train models first or download pre-trained models from our website):
python test.py --dataroot ./datasets/reflection --name reflection --do_upsampling
If the upsampling module isn't trained (train.py is used with '--n_epochs_upsample 0'), remove --do_upsampling.
Use '--results_dir <directory_path_to_save_result>' to specify the results directory.
See options/base_options.py and options/test_options.py for more test options.
"""
import os
from options.test_options import TestOptions
from third_party.data import create_dataset
from third_party.models import create_model
from third_party.util.visualizer import save_images, save_videos
from third_party.util import html
import torch
if __name__ == '__main__':
testopt = TestOptions()
testopt.parse()
opt = testopt.parse_dataset_meta()
# hard-code some parameters for test
opt.num_threads = 0 # test code only supports num_threads = 0
opt.batch_size = 1 # test code only supports batch_size = 1
opt.serial_batches = True # disable data shuffling; comment this line if results on randomly chosen images are needed.
opt.display_id = -1 # no visdom display; the test code saves the results to a HTML file.
dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options
model = create_model(opt) # create a model given opt.model and other options
model.setup(opt) # regular setup: load and print networks; create schedulers
# create a website
web_dir = os.path.join(opt.results_dir, opt.name, '{}_{}'.format(opt.phase, opt.epoch)) # define the website directory
print('creating web directory', web_dir)
webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.epoch))
video_visuals = None
for i, data in enumerate(dataset):
if i >= opt.num_test: # only apply our model to opt.num_test images.
break
model.set_input(data) # unpack data from data loader
model.test() # run inference
img_path = model.get_image_paths() # get image paths
if i % 5 == 0: # save images to an HTML file
print('processing (%04d)-th image... %s' % (i, img_path))
visuals = model.get_results() # rgba, reconstruction, original, mask
if video_visuals is None:
video_visuals = visuals
else:
for k in video_visuals:
video_visuals[k] = torch.cat((video_visuals[k], visuals[k]))
rgba = { k: visuals[k] for k in visuals if 'rgba' in k }
# save RGBA layers
save_images(webpage, rgba, img_path, aspect_ratio=opt.aspect_ratio, width=opt.display_winsize)
save_videos(webpage, video_visuals, width=opt.display_winsize)
webpage.save() # save the HTML of videos