-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathspatialstream.py
251 lines (207 loc) · 9.91 KB
/
spatialstream.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import torch.utils.model_zoo as model_zoo
from data.STdatas import STDataset
import os
import time
import numpy as np
from utils import *
from floss import floss
import math
from tqdm import tqdm
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--lr', type=float, default=1e-7, required=False)
parser.add_argument('--loss_save', default='loss_spatial.png', required=False)
parser.add_argument('--save_name', default='_spatial.pth.tar', required=False)
parser.add_argument('--save_path', default='save', required=False)
parser.add_argument('--loss_function', default='f', required=False)
parser.add_argument('--num_epoch', type=int, default=10, required=False)
parser.add_argument('--device', default='0')
parser.add_argument('--resume', type=int, default=0, help='0 from vgg, 1 from pretrained model.')
parser.add_argument('--pretrained_model', default='save/best_spatial.pth.tar', help='path to pretrained model')
parser.add_argument('--batch_size', type=int, default=16, required=False)
parser.add_argument('--flowPath', default='../gtea_imgflow', required=False)
parser.add_argument('--imagePath', default='../gtea_images', required=False)
parser.add_argument('--fixsacPath', default='../fixsac', required=False)
parser.add_argument('--gtPath', default='../gtea_gts', required=False)
parser.add_argument('--val_name', default='Alireza', required=False)
args = parser.parse_args()
device = torch.device('cuda:'+args.device)
imgPath_s = args.imagePath
imgPath = args.flowPath
fixsacPath = args.fixsacPath
gtPath = args.gtPath
listFolders = [k for k in os.listdir(imgPath)]
listFolders.sort()
listGtFiles = [k for k in os.listdir(gtPath) if args.val_name not in k]
listGtFiles.sort()
listValGtFiles = [k for k in os.listdir(gtPath) if args.val_name in k]
listValGtFiles.sort()
print('num of training samples: ', len(listGtFiles))
listfixsacTrain = [k for k in os.listdir(fixsacPath) if args.val_name not in k]
listfixsacVal = [k for k in os.listdir(fixsacPath) if args.val_name in k]
listfixsacVal.sort()
listfixsacTrain.sort()
listTrainFiles = [k for k in os.listdir(imgPath_s) if args.val_name not in k]
listValFiles = [k for k in os.listdir(imgPath_s) if args.val_name in k]
listTrainFiles.sort()
listValFiles.sort()
print('num of val samples: ', len(listValFiles))
STTrainData = STDataset(imgPath, imgPath_s, gtPath, listFolders, listTrainFiles, listGtFiles, listfixsacTrain, fixsacPath)
STValData = STDataset(imgPath, imgPath_s, gtPath, listFolders, listValFiles, listValGtFiles, listfixsacVal, fixsacPath)
SpatialTrainLoader = DataLoader(dataset=STTrainData, batch_size=args.batch_size, shuffle=True, num_workers=0, pin_memory=True)
SpatialValLoader = DataLoader(dataset=STValData, batch_size=args.batch_size, shuffle=False, num_workers=0, pin_memory=True)
class VGG(nn.Module):
def __init__(self, features):
super(VGG, self).__init__()
self.features = features
for param in self.features.parameters():
param.requires_grad = False
self.decoder = nn.Sequential(nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),
nn.Upsample(scale_factor=2),
nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),
nn.Upsample(scale_factor=2),
nn.Conv2d(512, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),
nn.Upsample(scale_factor=2),
nn.Conv2d(256, 128, kernel_size=3, padding=1),nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, padding=1),nn.ReLU(inplace=True),
nn.Upsample(scale_factor=2),
nn.Conv2d(128, 64, kernel_size=3, padding=1),nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, padding=1),nn.ReLU(inplace=True),
nn.Conv2d(64, 1, kernel_size=1, padding=0),
)
self.final = nn.Sigmoid()
self._initialize_weights()
def forward(self, x):
x = self.features(x)
x = self.decoder(x)
y = self.final(x)
return y
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
n = m.weight.size(1)
m.weight.data.normal_(0, 0.01)
m.bias.data.zero_()
def save_checkpoint(state,filename,save_path):
torch.save(state, os.path.join(save_path, filename))
def train(train_loader, model, criterion, optimizer, epoch):
batch_time = AverageMeter()
losses = AverageMeter()
model.train()
end = time.time()
optimizer.zero_grad()
loss_mini_batch = 0.0
for i, sample in tqdm(enumerate(train_loader)):
input = sample['image']
target = sample['gt']
input = input.float().to(device)
target = target.float().to(device)
output = model(input)
target = target.view(output.size())
loss = criterion(output, target)
loss_mini_batch += loss.item()
loss.backward()
optimizer.step()
optimizer.zero_grad()
losses.update(loss_mini_batch, input.size(0))
batch_time.update(time.time() - end)
end = time.time()
loss_mini_batch = 0
if (i+1) % 5000 ==0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(epoch, i+1, len(train_loader)+1, batch_time=batch_time, loss=losses))
return losses.avg
def validate(val_loader, model, criterion, epoch):
batch_time = AverageMeter()
losses = AverageMeter()
aae = AverageMeter()
auc = AverageMeter()
model.eval()
end = time.time()
with torch.no_grad():
for i, sample in tqdm(enumerate(val_loader)):
input = sample['image']
target = sample['gt']
input = input.float().to(device)
target = target.float().to(device)
output = model(input)
target = target.view(output.size())
loss = criterion(output, target)
losses.update(loss.item(), input.size(0))
outim = output.cpu().data.numpy().squeeze()
targetim = target.cpu().data.numpy().squeeze()
aae1, auc1, _ = computeAAEAUC(outim, targetim)
auc.update(auc1)
aae.update(aae1)
batch_time.update(time.time() - end)
end = time.time()
if (i+1) % 1000 == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(i, len(val_loader), batch_time=batch_time, loss=losses,))
print ('AUC: {0}\t AAE: {1}'.format(auc.avg, aae.avg))
return losses.avg
# main
if args.resume == 1:
print('building model and loading from pretrained model...')
model = VGG(make_layers(cfg['D'], 3))
trained_model = args.pretrained_model
pretrained_dict = torch.load(trained_model)
pretrained_dict = pretrained_dict['state_dict']
model_dict = model.state_dict()
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
model.to(device)
print('done!')
else:
print('building model and loading pretrained_dict from vgg...')
model = VGG(make_layers(cfg['D'], 3))
pretrained_dict = model_zoo.load_url('https://download.pytorch.org/models/vgg16_bn-6c64b313.pth')
model_dict = model.state_dict()
pretrained_dict = {k: v for k,v in pretrained_dict.items() if k in model_dict}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
model.to(device)
print('done!')
if args.loss_function != 'f':
criterion = torch.nn.BCELoss().to(device)
else:
criterion = floss().to(device)
optimizer = torch.optim.Adam(model.decoder.parameters(), lr=args.lr)
if not os.path.exists(args.save_path):
os.makedirs(args.save_path)
# Training and testing loop
train_loss = []
val_loss = []
best_loss = 100
for epoch in range(args.num_epoch):
loss1 = train(SpatialTrainLoader, model, criterion, optimizer, epoch)
train_loss.append(loss1)
loss1 = validate(SpatialValLoader, model, criterion, epoch)
val_loss.append(loss1)
plot_loss(train_loss, val_loss, os.path.join(args.save_path, args.loss_save))
print('epoch%05d, val loss is: %05f' % (epoch, loss1))
if loss1 < best_loss:
best_loss = loss1
save_checkpoint({'epoch': epoch, 'arch': 'rgb', 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict(),},
'%05d'%epoch+args.save_name, args.save_path)