**If you are running experiments on GPU clusters, do not forget to check dependencies of the installed libraries with available cuda and gcc modules
- module load cuda/8.0.44
- module load cudnn/8.0-v5.1
- module load gcc/5.2.0
- module load git
- wget https://repo.continuum.io/miniconda/Miniconda2-latest-Linux-x86_64.sh
- chmod +x Miniconda2-latest-Linux-x86_64.sh
- ./Miniconda2-latest-Linux-x86_64.sh
- exit
- conda create -n tfenv
- source activate tfenv
- conda config --add channels conda-forge
- conda install tensorflow-gpu
- conda install ipython
- conda install scipy
- conda install scikit-learn
- conda install h5py
- pip install wget
- conda install matplotlib
- pip install -U nltk
- python -m nltk.downloader -d /(your-home-directory)/nltk_data all
- conda install gensim
** install seaborn (because I love their visualization)
** this will also instantly install python pandas - or can also be installed prior with conda install pandas
- cd (your-git-directory)
- git clone https://github.com/mwaskom/seaborn.git
- cd seaborn
- python setup.py install
- cd (your-git-directory)
- git clone https://github.com/fchollet/keras.git
- cd keras
- python setup.py install pip install git+git://github.com/fchollet/keras.git --upgrade
python
import tensorflow as tf
graph = tf.constant('Hello world')
session = tf.Session()
print(session.run(graph))
session.close()
source deactivate tfenv