-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfrick.py
196 lines (152 loc) · 6.43 KB
/
frick.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import speech_recognition as sr
r = sr.Recognizer()
print('Describe your model')
with sr.Microphone() as source:
audio = r.listen(source)
try:
print(r.recognize_google(audio))
except Exception:
print('No audio detected')
from interface import *
# from main import *
input_string = r.recognize_google(audio)
print(input_string)
print(get_specs(input_string))
# import torch
# import torch.nn as nn
# from torchvision import models
# import torch.nn.functional as F
# import torch.optim as optim
# from collections import defaultdict
# import time
# import copy
# layers = list(models.resnet18(pretrained=True).children())
# print(layers[:3])
# from __future__ import division
# import re
# import sys
# from google.cloud import speech
# from google.cloud.speech import enums
# from google.cloud.speech import types
# import pyaudio
# from six.moves import queue
# # Audio recording parameters
# RATE = 16000
# CHUNK = int(RATE / 10) # 100ms
# class MicrophoneStream(object):
# """Opens a recording stream as a generator yielding the audio chunks."""
# def __init__(self, rate, chunk):
# self._rate = rate
# self._chunk = chunk
# # Create a thread-safe buffer of audio data
# self._buff = queue.Queue()
# self.closed = True
# def __enter__(self):
# self._audio_interface = pyaudio.PyAudio()
# self._audio_stream = self._audio_interface.open(
# format=pyaudio.paInt16,
# # The API currently only supports 1-channel (mono) audio
# # https://goo.gl/z757pE
# channels=1, rate=self._rate,
# input=True, frames_per_buffer=self._chunk,
# # Run the audio stream asynchronously to fill the buffer object.
# # This is necessary so that the input device's buffer doesn't
# # overflow while the calling thread makes network requests, etc.
# stream_callback=self._fill_buffer,
# )
# self.closed = False
# return self
# def __exit__(self, type, value, traceback):
# self._audio_stream.stop_stream()
# self._audio_stream.close()
# self.closed = True
# # Signal the generator to terminate so that the client's
# # streaming_recognize method will not block the process termination.
# self._buff.put(None)
# self._audio_interface.terminate()
# def _fill_buffer(self, in_data, frame_count, time_info, status_flags):
# """Continuously collect data from the audio stream, into the buffer."""
# self._buff.put(in_data)
# return None, pyaudio.paContinue
# def generator(self):
# while not self.closed:
# # Use a blocking get() to ensure there's at least one chunk of
# # data, and stop iteration if the chunk is None, indicating the
# # end of the audio stream.
# chunk = self._buff.get()
# if chunk is None:
# return
# data = [chunk]
# # Now consume whatever other data's still buffered.
# while True:
# try:
# chunk = self._buff.get(block=False)
# if chunk is None:
# return
# data.append(chunk)
# except queue.Empty:
# break
# yield b''.join(data)
# def listen_print_loop(responses):
# """Iterates through server responses and prints them.
# The responses passed is a generator that will block until a response
# is provided by the server.
# Each response may contain multiple results, and each result may contain
# multiple alternatives; for details, see https://goo.gl/tjCPAU. Here we
# print only the transcription for the top alternative of the top result.
# In this case, responses are provided for interim results as well. If the
# response is an interim one, print a line feed at the end of it, to allow
# the next result to overwrite it, until the response is a final one. For the
# final one, print a newline to preserve the finalized transcription.
# """
# num_chars_printed = 0
# for response in responses:
# if not response.results:
# continue
# # The `results` list is consecutive. For streaming, we only care about
# # the first result being considered, since once it's `is_final`, it
# # moves on to considering the next utterance.
# result = response.results[0]
# if not result.alternatives:
# continue
# # Display the transcription of the top alternative.
# transcript = result.alternatives[0].transcript
# # Display interim results, but with a carriage return at the end of the
# # line, so subsequent lines will overwrite them.
# #
# # If the previous result was longer than this one, we need to print
# # some extra spaces to overwrite the previous result
# overwrite_chars = ' ' * (num_chars_printed - len(transcript))
# if not result.is_final:
# sys.stdout.write(transcript + overwrite_chars + '\r')
# sys.stdout.flush()
# num_chars_printed = len(transcript)
# else:
# print(transcript + overwrite_chars)
# # Exit recognition if any of the transcribed phrases could be
# # one of our keywords.
# if re.search(r'\b(exit|quit)\b', transcript, re.I):
# print('Exiting..')
# break
# num_chars_printed = 0
# def main():
# # See http://g.co/cloud/speech/docs/languages
# # for a list of supported languages.
# language_code = 'en-US' # a BCP-47 language tag
# client = speech.SpeechClient()
# config = types.RecognitionConfig(
# encoding=enums.RecognitionConfig.AudioEncoding.LINEAR16,
# sample_rate_hertz=RATE,
# language_code=language_code)
# streaming_config = types.StreamingRecognitionConfig(
# config=config,
# interim_results=True)
# with MicrophoneStream(RATE, CHUNK) as stream:
# audio_generator = stream.generator()
# requests = (types.StreamingRecognizeRequest(audio_content=content)
# for content in audio_generator)
# responses = client.streaming_recognize(streaming_config, requests)
# # Now, put the transcription responses to use.
# listen_print_loop(responses)
# if __name__ == '__main__':
# main()