forked from soumith/cudnn.torch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinit.lua
210 lines (190 loc) · 6.54 KB
/
init.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
require 'cutorch'
require 'nn'
cudnn = require 'cudnn.env'
require('cudnn.ffi')
local C = cudnn.C
local ffi = require 'ffi'
cudnn.benchmark = false
cudnn.fastest = false
local maxStreamsPerDevice = 1024
local numDevices = cutorch.getDeviceCount()
-- this tensor keeps track of whether a handle has been initialized or not
local handleStatus = torch.ByteTensor(numDevices,
maxStreamsPerDevice):zero()
-- here we create an array of cudnn handle structs
cudnn.handle = ffi.new('struct cudnnContext*[?]', numDevices*maxStreamsPerDevice)
local function destroy(handle)
local currentDevice = cutorch.getDevice()
for i=1,numDevices do
cutorch.setDevice(i)
-- streams go from 0 to maxStreamsPerDevice - 1
for j=0,maxStreamsPerDevice - 1 do
if handleStatus[i][j + 1] == 1 then -- if handle was created
cudnn.errcheck('cudnnDestroy', handle[(((i-1)*maxStreamsPerDevice) + j)]);
end
end
end
cutorch.setDevice(currentDevice)
end
ffi.gc(cudnn.handle, destroy)
cudnn.typemap = {
['torch.CudaHalfTensor'] = 'CUDNN_DATA_HALF',
['torch.CudaTensor'] = 'CUDNN_DATA_FLOAT',
['torch.CudaDoubleTensor'] = 'CUDNN_DATA_DOUBLE',
}
local sizeofmap = {
['torch.CudaHalfTensor'] = cutorch.hasHalf and ffi.sizeof('half') or 2,
['torch.CudaTensor'] = ffi.sizeof('float'),
['torch.CudaDoubleTensor'] = ffi.sizeof('double'),
}
function cudnn.sizeof(t)
return sizeofmap[torch.type(t)]
end
local onemap = {
['torch.CudaHalfTensor'] = torch.FloatTensor({1}),
['torch.CudaTensor'] = torch.FloatTensor({1}),
['torch.CudaDoubleTensor'] = torch.DoubleTensor({1}),
}
local zeromap = {
['torch.CudaHalfTensor'] = torch.FloatTensor({0}),
['torch.CudaTensor'] = torch.FloatTensor({0}),
['torch.CudaDoubleTensor'] = torch.DoubleTensor({0}),
}
function cudnn.scalar(t, val)
if val == 1 then
return onemap[torch.type(t)]:data()
elseif val == 0 then
return zeromap[torch.type(t)]:data()
else
error('unknown scalar')
end
end
-- TODO: determine if device supports true half and use true half on it
-- so far use float for half and float, double for double
local function determineHalfCapability(dev)
local prop = cutorch.getDeviceProperties(dev)
if prop.major >= 6 or prop.name:find'X1' then
return 'CUDNN_DATA_HALF'
else
return 'CUDNN_DATA_FLOAT'
end
end
local configmaps = {}
for i=1,cutorch.getDeviceCount() do
configmaps[i] = {
['torch.CudaHalfTensor'] = determineHalfCapability(i),
['torch.CudaTensor'] = 'CUDNN_DATA_FLOAT',
['torch.CudaDoubleTensor'] = 'CUDNN_DATA_DOUBLE',
}
end
cudnn.configmap = function(tensortype)
return configmaps[cutorch.getDevice()][tensortype]
end
function cudnn.getHandle()
local device = cutorch.getDevice()
local stream = cutorch.getStream() -- starts from 0
assert(stream < maxStreamsPerDevice, 'cudnn bindings only support max of : '
.. maxStreamsPerDevice .. ' streams per device')
-- lazy initialization of handles
if handleStatus[device][stream + 1] == 0 then
local status = C['cudnnCreate'](cudnn.handle
+ (((device-1) * maxStreamsPerDevice)
+ stream))
if status ~= ffi.C.CUDNN_STATUS_SUCCESS then
local str = ffi.string(C.cudnnGetErrorString(status))
error('Error in CuDNN: ' .. str)
end
handleStatus[device][stream + 1] = 1 -- mark handle as initialized
end
return cudnn.handle[(((device-1)*maxStreamsPerDevice) + stream)]
end
local errcheck = function(f, ...)
C.cudnnSetStream(cudnn.getHandle(),
ffi.C.THCState_getCurrentStream(cutorch.getState()))
local status = C[f](...)
if status ~= ffi.C.CUDNN_STATUS_SUCCESS then
local str = ffi.string(C.cudnnGetErrorString(status))
error('Error in CuDNN: ' .. str .. ' ('..f..')')
end
end
cudnn.errcheck = errcheck
function cudnn.toDescriptor(t)
local typename = torch.typename(t)
assert(cudnn.typemap[typename])
local descriptor = ffi.new('struct cudnnTensorStruct*[1]')
-- create descriptor
errcheck('cudnnCreateTensorDescriptor', descriptor)
-- set gc hook
local function destroy(d)
errcheck('cudnnDestroyTensorDescriptor', d[0]);
end
ffi.gc(descriptor, destroy)
-- view 2D and 3D as 4D
if t:dim() == 2 then
t = t:view(t:size(1), t:size(2), 1, 1)
elseif t:dim() == 3 then
t = t:view(t:size(1), t:size(2), t:size(3), 1)
end
-- set descriptor
local size = torch.LongTensor(t:size()):int()
local stride = torch.LongTensor(t:stride()):int()
errcheck('cudnnSetTensorNdDescriptor', descriptor[0], cudnn.typemap[typename],
t:dim(), size:data(), stride:data())
return descriptor
end
local sharedBuffer = {}
for i=1,numDevices do
sharedBuffer[i] = {}
end
function cudnn.getSharedWorkspace()
local device = cutorch.getDevice()
local stream = cutorch.getStream() -- starts from 0
if not sharedBuffer[device][stream] then
sharedBuffer[device][stream] = torch.CudaTensor(1)
end
return sharedBuffer[device][stream]
end
-- Creates a clone of luaStr that can be used to prevent side
-- effects when passing char* to C functions.
function cudnn.externalizeString(luaStr)
local cStr = ffi.new("char[?]", #luaStr+1)
ffi.copy(cStr, luaStr)
return cStr
end
require('cudnn.SpatialConvolution')
require('cudnn.VolumetricConvolution')
require('cudnn.SpatialFullConvolution')
require('cudnn.Pooling')
require('cudnn.SpatialMaxPooling')
require('cudnn.SpatialAveragePooling')
require('cudnn.Pooling3D')
require('cudnn.VolumetricMaxPooling')
require('cudnn.VolumetricAveragePooling')
require('cudnn.Pointwise')
require('cudnn.ReLU')
require('cudnn.ClippedReLU')
require('cudnn.Tanh')
require('cudnn.Sigmoid')
require('cudnn.SpatialSoftMax')
require('cudnn.SpatialLogSoftMax')
require('cudnn.VolumetricSoftMax')
require('cudnn.VolumetricLogSoftMax')
require('cudnn.SoftMax')
require('cudnn.LogSoftMax')
require('cudnn.SpatialCrossMapLRN')
require('cudnn.BatchNormalization')
require('cudnn.SpatialBatchNormalization')
require('cudnn.VolumetricBatchNormalization')
require('cudnn.SpatialCrossEntropyCriterion')
require('cudnn.VolumetricCrossEntropyCriterion')
require('cudnn.TemporalConvolution')
require('cudnn.RNN')
require('cudnn.RNNTanh')
require('cudnn.RNNReLU')
require('cudnn.BLSTM')
require('cudnn.LSTM')
require('cudnn.BGRU')
require('cudnn.GRU')
require('cudnn.functional')
require('cudnn.convert')
return cudnn