|
| 1 | +""" |
| 2 | +Hermite Genz-Keister quadrature rules |
| 3 | +
|
| 4 | +Adapted from John Burkardt's implementation in Matlab |
| 5 | +""" |
| 6 | +import numpy |
| 7 | +import scipy |
| 8 | + |
| 9 | +from .utils import combine_quadrature |
| 10 | + |
| 11 | +GENZ_KEISTER_STORE = { |
| 12 | + 1: ((0.0000000000000000e+00,), (1.7724538509055159,)), |
| 13 | + 3: ((0.0000000000000000e+00, 1.2247448713915889), |
| 14 | + (1.1816359006036772, 0.29540897515091930)), |
| 15 | + 7: ((0.0000000000000000, 0.52403354748695763, |
| 16 | + 1.2247448713915889, 2.9592107790638380), |
| 17 | + (0.81310410832613500, 0.23286251787386100, |
| 18 | + 0.24557928535031393, 0.0012330680655153448)), |
| 19 | + 9: ((0.0000000000000000, 0.52403354748695763, 1.2247448713915889, |
| 20 | + 2.0232301911005157, 2.9592107790638380), |
| 21 | + (0.45014700975378197, 0.47869428549114124, 0.16811892894767771, |
| 22 | + 0.014173117873979098, 1.6708826306882348e-4)), |
| 23 | + 17: ((0.0000000000000000, 0.52403354748695763, 0.87004089535290285, |
| 24 | + 1.2247448713915889, 1.8357079751751868, 2.0232301911005157, |
| 25 | + 2.9592107790638380, 3.6677742159463378, 4.4995993983103881), |
| 26 | + (0.47310733504965385, 0.45119803602358544, 0.025155825701712934, |
| 27 | + 0.15718298376652240, 0.0034840719346803800, 0.012466519132805918, |
| 28 | + 1.8723818949278350e-04, -1.4542843387069391e-06, 3.7463469943051758e-08)), |
| 29 | + 19: ((0.0000000000000000, 0.52403354748695763, 0.87004089535290285, |
| 30 | + 1.2247448713915889, 1.8357079751751868, 2.0232301911005157, |
| 31 | + 2.2665132620567876, 2.9592107790638380, |
| 32 | + 3.6677742159463378, 4.4995993983103881), |
| 33 | + (0.53788160700510168, 0.36924643368920851, 0.10838861955003017, |
| 34 | + 0.11360729895748269, 0.032055243099445879, -0.011232438489069229, |
| 35 | + 5.1133174390883855e-03, 1.0656589772852267e-04, |
| 36 | + 1.0802767206624762e-06, 1.5295717705322357e-09)), |
| 37 | + 31: ((0.0000000000000000, 0.17606414208200893, 0.52403354748695763, |
| 38 | + 0.87004089535290285, 1.2247448713915889, 1.5794121348467671, |
| 39 | + 1.8357079751751868, 2.0232301911005157, 2.2665132620567876, |
| 40 | + 2.5705583765842968, 2.9592107790638380, 3.6677742159463378, |
| 41 | + 4.4995993983103881, 5.0360899444730940, |
| 42 | + 5.6432578578857449, 6.3759392709822356), |
| 43 | + (0.45888839636756751, 0.049855761893293160, 0.35393889029580544, |
| 44 | + 0.11594930984853116, 0.10939325071860877, 0.0031210210352682834, |
| 45 | + 0.029409427580350787, -0.0098566270434610019, 0.0048385208205502612, |
| 46 | + 2.6665159778939428e-05, 1.0541662394746661e-04, 1.0889219692128120e-06, |
| 47 | + 1.4055252024722478e-09, 9.0675288231679823e-12, |
| 48 | + -2.6304696458548942e-13, 2.2365645607044459e-15)), |
| 49 | + 33: ((0.0000000000000000, 0.17606414208200893, 0.52403354748695763, |
| 50 | + 0.87004089535290285, 1.2247448713915889, 1.5794121348467671, |
| 51 | + 1.8357079751751868, 2.0232301911005157, 2.2665132620567876, |
| 52 | + 2.5705583765842968, 2.9592107790638380, 3.6677742159463378, |
| 53 | + 4.0292201405043713, 4.4995993983103881, 5.0360899444730940, |
| 54 | + 5.6432578578857449, 6.3759392709822356), |
| 55 | + (2.4656644932829619e-01, 1.8411696047725790e-01, 3.1208656194697448e-01, |
| 56 | + 1.3726521191567551e-01, 9.6913444944583621e-02, 1.3032872699027960e-02, |
| 57 | + 2.0435058359107205e-02, -4.9118576123877555e-03, 3.7580026604304793e-03, |
| 58 | + 1.4753204901862772e-04, 9.8710009197409173e-05, 1.2245220967158438e-06, |
| 59 | + -2.3903343382803510e-08, 2.7547825138935901e-09, -3.4281570530349562e-11, |
| 60 | + 4.7219278666417693e-13, -1.7602932805372496e-15)), |
| 61 | + 35: ((0.0000000000000000e+00, 1.7606414208200893e-01, 5.2403354748695763e-01, |
| 62 | + 8.7004089535290285e-01, 1.2247448713915889e+00, 1.5794121348467671e+00, |
| 63 | + 1.8357079751751868e+00, 2.0232301911005157e+00, 2.2665132620567876e+00, |
| 64 | + 2.5705583765842968e+00, 2.9592107790638380e+00, 3.3491639537131945e+00, |
| 65 | + 3.6677742159463378e+00, 4.0292201405043713e+00, 4.4995993983103881e+00, |
| 66 | + 5.0360899444730940e+00, 5.6432578578857449e+00, 6.3759392709822356e+00), |
| 67 | + (9.1262675363737921e-04, 3.3988595585585218e-01, 2.6244871488784277e-01, |
| 68 | + 1.6371221555735804e-01, 8.0245518147390893e-02, 2.7780508908535097e-02, |
| 69 | + 5.5928828911469180e-03, 4.0967527720344047e-03, 1.4515580425155904e-03, |
| 70 | + 4.8785399304443770e-04, 6.3328620805617891e-05, 4.8462799737020461e-06, |
| 71 | + 4.3737818040926989e-07, 3.7920222392319532e-08, 8.1553721816916897e-10, |
| 72 | + 5.4896836948499462e-12, 9.6599466278563243e-15, 1.8684014894510604e-18)), |
| 73 | + 37: ((0.000000000000000, 0.214618180588171, 0.524033547486958, |
| 74 | + 0.870040895352903, 1.224744871391589, 1.561553427651873, |
| 75 | + 1.835707975175187, 2.023230191100516, 2.266513262056788, |
| 76 | + 2.597288631188366, 2.959210779063838, 3.315584617593290, |
| 77 | + 3.667774215946338, 4.057956316089741, 4.499599398310388, |
| 78 | + 4.986551454150765, 5.521865209868350, 6.124527854622158, |
| 79 | + 6.853200069757519), |
| 80 | + (0.968824552928425499e-01, 0.147655710402686249e+00, |
| 81 | + 0.143099302896833389e+00, 0.937208280655245902e-01, |
| 82 | + 0.442116442189845444e-01, 0.15513109874859354e-01, |
| 83 | + 0.43334988122723492e-02, 0.176802225818295443e-02, |
| 84 | + 0.985827582996483824e-03, 0.234940366465975222e-03, |
| 85 | + 0.32265185983739747e-04, 0.330975870979203419e-05, |
| 86 | + 0.295907520230744049e-06, 0.16595448809389819e-07, |
| 87 | + 0.422525843963111041e-09, 0.45661763676186859e-11, |
| 88 | + 0.182242751549129356e-13, 0.187781893143728947e-16, |
| 89 | + 0.19030350940130498e-20)), |
| 90 | + 41: ((0.0000000000000000, 0.195324784415805, 0.52403354748695763, |
| 91 | + 0.87004089535290285, 1.2247448713915889, 1.585873011819188, |
| 92 | + 1.8357079751751868, 2.0232301911005157, 2.043834754429505, |
| 93 | + 2.2665132620567876, 2.630415236459871, 2.9592107790638380, |
| 94 | + 3.296114596212218, 3.6677742159463378, 4.070919267883068, |
| 95 | + 4.4995993983103881, 4.953574342912980, 5.437443360177798, |
| 96 | + 5.961461043404500, 6.547083258397540, 7.251792998192644), |
| 97 | + (0.562793426043218877e-01, 0.165639740400529554e+00, |
| 98 | + 0.145966293895926429e+00, 0.928338228510111845e-01, |
| 99 | + 0.45109010335859128e-01, 0.165445526705860772e-01, |
| 100 | + 0.705471110122962612e-03, 0.178852543033699732e-01, |
| 101 | + - 0.144528422206988237e-01, 0.140697424065246825e-02, |
| 102 | + 0.189010909805097887e-03, 0.288976780274478689e-04, |
| 103 | + 0.381182791749177506e-05, 0.315372265852264871e-06, |
| 104 | + 0.149158210417831408e-07, 0.400784141604834759e-09, |
| 105 | + 0.581803393170320419e-11, 0.408820161202505983e-13, |
| 106 | + 0.1140700785308509e-15, 0.860427172512207236e-19, |
| 107 | + 0.664195893812757801e-23)), |
| 108 | + 43: ((0.0000000000000000, 0.196029453662011, 0.52403354748695763, |
| 109 | + 0.87004089535290285, 1.2247448713915889, 1.583643465293944, |
| 110 | + 1.8357079751751868, 2.0232301911005157, 2.089340389294661, |
| 111 | + 2.2665132620567876, 2.633356763661946, 2.9592107790638380, |
| 112 | + 3.295265921534226, 3.6677742159463378, 4.071335874253583, |
| 113 | + 4.4995993983103881, 4.952329763008589, 5.434053000365068, |
| 114 | + 5.954781975039809, 6.535398426382995, 7.231746029072501, |
| 115 | + 10.167574994881873), |
| 116 | + (0.579595986101181095e-01, 0.164880913687436689e+00, |
| 117 | + 0.145863292632147353e+00, 0.928711584442575456e-01, |
| 118 | + 0.450612329041864976e-01, 0.163616873493832402e-01, |
| 119 | + 0.139966252291568061e-02, 0.67354758901013295e-02, |
| 120 | + -0.38799558623877157e-02, 0.150909333211638847e-02, |
| 121 | + 0.184789465688357423e-03, 0.286802318064777813e-04, |
| 122 | + 0.383880761947398577e-05, 0.316018363221289247e-06, |
| 123 | + 0.148653643571796457e-07, 0.400030575425776948e-09, |
| 124 | + 0.586915885251734856e-11, 0.421921851448196032e-13, |
| 125 | + 0.122619614947864357e-15, 0.992619971560149097e-19, |
| 126 | + 0.87544909871323873e-23, 0.546191947478318097e-37)), |
| 127 | +} |
| 128 | + |
| 129 | +RULES = { |
| 130 | + 16: [1, 3, 7, 9, 17, 19, 31], |
| 131 | + 18: [1, 3, 9, 19, 37], |
| 132 | + 22: [1, 3, 9, 19, 41], |
| 133 | + 24: [1, 3, 9, 19, 43], |
| 134 | +} |
| 135 | + |
| 136 | +def genz_keister_16(order, dist=None): |
| 137 | + """ |
| 138 | + Create Genz-Keister variant 16 quadrature nodes and weights. |
| 139 | +
|
| 140 | + Args: |
| 141 | + order (int, Sequence[int]): |
| 142 | + The order of the quadrature. |
| 143 | + dist (Optional[chaospy.Distribution]): |
| 144 | + The distribution which density will be used as weight function. |
| 145 | + If omitted, standard Gaussian is assumed. |
| 146 | +
|
| 147 | + Returns: |
| 148 | + (numpy.ndarray, numpy.ndarray): |
| 149 | + Genz-Keister quadrature abscissas and weights. |
| 150 | +
|
| 151 | + Examples: |
| 152 | + >>> nodes, weights = genz_keister_16(4) |
| 153 | + >>> nodes.round(2) |
| 154 | + array([[-6.36, -5.19, -4.18, -2.86, -2.6 , -1.73, -1.23, -0.74, 0. , |
| 155 | + 0.74, 1.23, 1.73, 2.6 , 2.86, 4.18, 5.19, 6.36]]) |
| 156 | + >>> weights.round(8) |
| 157 | + array([ 2.0000000e-08, -8.2000000e-07, 1.0564000e-04, 7.0334800e-03, |
| 158 | + 1.9656800e-03, 8.8681000e-02, 1.4192650e-02, 2.5456123e-01, |
| 159 | + 2.6692223e-01, 2.5456123e-01, 1.4192650e-02, 8.8681000e-02, |
| 160 | + 1.9656800e-03, 7.0334800e-03, 1.0564000e-04, -8.2000000e-07, |
| 161 | + 2.0000000e-08]) |
| 162 | +
|
| 163 | + """ |
| 164 | + return genz_keister(order, dist, rule=16) |
| 165 | + |
| 166 | + |
| 167 | +def genz_keister_18(order, dist=None): |
| 168 | + """ |
| 169 | + Create Genz-Keister variant 18 quadrature nodes and weights. |
| 170 | +
|
| 171 | + Args: |
| 172 | + order (int, Sequence[int]): |
| 173 | + The order of the quadrature. |
| 174 | + dist (Optional[chaospy.Distribution]): |
| 175 | + The distribution which density will be used as weight function. |
| 176 | + If omitted, standard Gaussian is assumed. |
| 177 | +
|
| 178 | + Returns: |
| 179 | + (numpy.ndarray, numpy.ndarray): |
| 180 | + Genz-Keister quadrature abscissas and weights. |
| 181 | +
|
| 182 | + Examples: |
| 183 | + >>> nodes, weights = genz_keister_18(2) |
| 184 | + >>> nodes.round(2) |
| 185 | + array([[-4.18, -2.86, -1.73, -0.74, 0. , 0.74, 1.73, 2.86, 4.18]]) |
| 186 | + >>> weights.round(8) |
| 187 | + array([9.4270000e-05, 7.9963300e-03, 9.4850950e-02, 2.7007433e-01, |
| 188 | + 2.5396825e-01, 2.7007433e-01, 9.4850950e-02, 7.9963300e-03, |
| 189 | + 9.4270000e-05]) |
| 190 | +
|
| 191 | + """ |
| 192 | + return genz_keister(order, dist, rule=18) |
| 193 | + |
| 194 | + |
| 195 | +def genz_keister_22(order, dist=None): |
| 196 | + """ |
| 197 | + Create Genz-Keister variant 22 quadrature nodes and weights. |
| 198 | +
|
| 199 | + Args: |
| 200 | + order (int, Sequence[int]): |
| 201 | + The order of the quadrature. |
| 202 | + dist (Optional[chaospy.Distribution]): |
| 203 | + The distribution which density will be used as weight function. |
| 204 | + If omitted, standard Gaussian is assumed. |
| 205 | +
|
| 206 | + Returns: |
| 207 | + (numpy.ndarray, numpy.ndarray): |
| 208 | + Genz-Keister quadrature abscissas and weights. |
| 209 | +
|
| 210 | + Examples: |
| 211 | + >>> nodes, weights = genz_keister_22(2) |
| 212 | + >>> nodes.round(2) |
| 213 | + array([[-4.18, -2.86, -1.73, -0.74, 0. , 0.74, 1.73, 2.86, 4.18]]) |
| 214 | + >>> weights.round(8) |
| 215 | + array([9.4270000e-05, 7.9963300e-03, 9.4850950e-02, 2.7007433e-01, |
| 216 | + 2.5396825e-01, 2.7007433e-01, 9.4850950e-02, 7.9963300e-03, |
| 217 | + 9.4270000e-05]) |
| 218 | +
|
| 219 | + """ |
| 220 | + return genz_keister(order, dist, rule=22) |
| 221 | + |
| 222 | + |
| 223 | +def genz_keister_24(order, dist=None): |
| 224 | + """ |
| 225 | + Create Genz-Keister variant 24 quadrature nodes and weights. |
| 226 | +
|
| 227 | + Args: |
| 228 | + order (int, Sequence[int]): |
| 229 | + The order of the quadrature. |
| 230 | + dist (Optional[chaospy.Distribution]): |
| 231 | + The distribution which density will be used as weight function. |
| 232 | + If omitted, standard Gaussian is assumed. |
| 233 | +
|
| 234 | + Returns: |
| 235 | + (numpy.ndarray, numpy.ndarray): |
| 236 | + Genz-Keister quadrature abscissas and weights. |
| 237 | +
|
| 238 | + Examples: |
| 239 | + >>> nodes, weights = genz_keister_24(2) |
| 240 | + >>> nodes.round(2) |
| 241 | + array([[-4.18, -2.86, -1.73, -0.74, 0. , 0.74, 1.73, 2.86, 4.18]]) |
| 242 | + >>> weights.round(8) |
| 243 | + array([9.4270000e-05, 7.9963300e-03, 9.4850950e-02, 2.7007433e-01, |
| 244 | + 2.5396825e-01, 2.7007433e-01, 9.4850950e-02, 7.9963300e-03, |
| 245 | + 9.4270000e-05]) |
| 246 | +
|
| 247 | + """ |
| 248 | + return genz_keister(order, dist, rule=24) |
| 249 | + |
| 250 | + |
| 251 | +def genz_keister(order, dist=None, rule=24): |
| 252 | + """ |
| 253 | + Create Genz-Keister quadrature nodes and weights. |
| 254 | +
|
| 255 | + Args: |
| 256 | + order (int, Sequence[int]): |
| 257 | + The order of the quadrature. |
| 258 | + dist (Optional[chaospy.Distribution]): |
| 259 | + The distribution which density will be used as weight function. |
| 260 | + If omitted, standard Gaussian is assumed. |
| 261 | + rule (int, Sequence[int]): |
| 262 | + The Genz-Keister rule name. Supported rules are 16, 18, 22 and 24. |
| 263 | +
|
| 264 | + Returns: |
| 265 | + (numpy.ndarray, numpy.ndarray): |
| 266 | + Genz-Keister quadrature abscissas and weights. |
| 267 | +
|
| 268 | + Examples: |
| 269 | + >>> genz_keister(0) |
| 270 | + (array([[0.]]), array([1.])) |
| 271 | + >>> genz_keister(1) # doctest: +NORMALIZE_WHITESPACE |
| 272 | + (array([[-1.73205081, 0. , 1.73205081]]), |
| 273 | + array([0.16666667, 0.66666667, 0.16666667])) |
| 274 | +
|
| 275 | + """ |
| 276 | + shape = (1,) if dist is None else (len(dist),) |
| 277 | + order = numpy.broadcast_to(order, shape) |
| 278 | + rule = numpy.broadcast_to(rule, shape) |
| 279 | + nodes, weights = zip(*[_genz_keister(order_, rule_) |
| 280 | + for order_, rule_ in zip(order, rule)]) |
| 281 | + nodes, weights = combine_quadrature(nodes, weights) |
| 282 | + if dist is not None: |
| 283 | + nodes = dist.inv(scipy.special.ndtr(nodes)) |
| 284 | + return nodes, weights |
| 285 | + |
| 286 | + |
| 287 | +def _genz_keister(order, rule): |
| 288 | + assert rule in RULES, "rule %d not in known rules: %s" % (rule, list(RULES)) |
| 289 | + assert order <= len(RULES[rule]), ( |
| 290 | + "rule genz_keister_%d limited at order %d" % (rule, order)) |
| 291 | + order = RULES[rule][order] |
| 292 | + nodes, weights = GENZ_KEISTER_STORE[order] |
| 293 | + length = len(nodes) |
| 294 | + nodes = numpy.array(nodes[::-1]+nodes[1:]) |
| 295 | + nodes[:length-1] *= -1 |
| 296 | + nodes *= numpy.sqrt(2) |
| 297 | + weights = numpy.array(weights[::-1]+weights[1:]) |
| 298 | + weights /= numpy.sum(weights) |
| 299 | + |
| 300 | + return nodes, weights |
0 commit comments