-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathgan-controlled.py
185 lines (146 loc) · 7.81 KB
/
gan-controlled.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import tensorflow as tf
import numpy as np
import datetime
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/")
def discriminator(x_image, reuse=False):
if (reuse):
tf.get_variable_scope().reuse_variables()
# First convolutional and pool layers
# These search for 32 different 5 x 5 pixel features
d_w1 = tf.get_variable('d_w1', [5, 5, 1, 32], initializer=tf.truncated_normal_initializer(stddev=0.02))
d_b1 = tf.get_variable('d_b1', [32], initializer=tf.constant_initializer(0))
d1 = tf.nn.conv2d(input=x_image, filter=d_w1, strides=[1, 1, 1, 1], padding='SAME')
d1 = d1 + d_b1
d1 = tf.nn.relu(d1)
d1 = tf.nn.avg_pool(d1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# Second convolutional and pool layers
# These search for 64 different 5 x 5 pixel features
d_w2 = tf.get_variable('d_w2', [5, 5, 32, 64], initializer=tf.truncated_normal_initializer(stddev=0.02))
d_b2 = tf.get_variable('d_b2', [64], initializer=tf.constant_initializer(0))
d2 = tf.nn.conv2d(input=d1, filter=d_w2, strides=[1, 1, 1, 1], padding='SAME')
d2 = d2 + d_b2
d2 = tf.nn.relu(d2)
d2 = tf.nn.avg_pool(d2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# First fully connected layer
d_w3 = tf.get_variable('d_w3', [7 * 7 * 64, 1024], initializer=tf.truncated_normal_initializer(stddev=0.02))
d_b3 = tf.get_variable('d_b3', [1024], initializer=tf.constant_initializer(0))
d3 = tf.reshape(d2, [-1, 7 * 7 * 64])
d3 = tf.matmul(d3, d_w3)
d3 = d3 + d_b3
d3 = tf.nn.relu(d3)
# Second fully connected layer
d_w4 = tf.get_variable('d_w4', [1024, 1], initializer=tf.truncated_normal_initializer(stddev=0.02))
d_b4 = tf.get_variable('d_b4', [1], initializer=tf.constant_initializer(0))
# Final layer
d4 = tf.matmul(d3, d_w4) + d_b4
# d4 = tf.sigmoid(d4)
# d4 dimensions: batch_size x 1
return d4
def generator(batch_size, z_dim):
z = tf.random_normal([batch_size, z_dim], mean=0, stddev=1, name='z')
g_w1 = tf.get_variable('g_w1', [z_dim, 3136], dtype=tf.float32, initializer=tf.truncated_normal_initializer(stddev=0.02))
g_b1 = tf.get_variable('g_b1', [3136], initializer=tf.truncated_normal_initializer(stddev=0.02))
g1 = tf.matmul(z, g_w1) + g_b1
g1 = tf.reshape(g1, [-1, 56, 56, 1])
g1 = tf.contrib.layers.batch_norm(g1, epsilon=1e-5, scope='bn1')
g1 = tf.nn.relu(g1)
# Generate 50 features
g_w2 = tf.get_variable('g_w2', [3, 3, 1, z_dim/2], dtype=tf.float32, initializer=tf.truncated_normal_initializer(stddev=0.02))
g_b2 = tf.get_variable('g_b2', [z_dim/2], initializer=tf.truncated_normal_initializer(stddev=0.02))
g2 = tf.nn.conv2d(g1, g_w2, strides=[1, 2, 2, 1], padding='SAME')
g2 = g2 + g_b2
g2 = tf.contrib.layers.batch_norm(g2, epsilon=1e-5, scope='bn2')
g2 = tf.nn.relu(g2)
g2 = tf.image.resize_images(g2, [56, 56])
# Generate 25 features
g_w3 = tf.get_variable('g_w3', [3, 3, z_dim/2, z_dim/4], dtype=tf.float32, initializer=tf.truncated_normal_initializer(stddev=0.02))
g_b3 = tf.get_variable('g_b3', [z_dim/4], initializer=tf.truncated_normal_initializer(stddev=0.02))
g3 = tf.nn.conv2d(g2, g_w3, strides=[1, 2, 2, 1], padding='SAME')
g3 = g3 + g_b3
g3 = tf.contrib.layers.batch_norm(g3, epsilon=1e-5, scope='bn3')
g3 = tf.nn.relu(g3)
g3 = tf.image.resize_images(g3, [56, 56])
# Final convolution with one output channel
g_w4 = tf.get_variable('g_w4', [1, 1, z_dim/4, 1], dtype=tf.float32, initializer=tf.truncated_normal_initializer(stddev=0.02))
g_b4 = tf.get_variable('g_b4', [1], initializer=tf.truncated_normal_initializer(stddev=0.02))
g4 = tf.nn.conv2d(g3, g_w4, strides=[1, 2, 2, 1], padding='SAME')
g4 = g4 + g_b4
g4 = tf.sigmoid(g4)
# No batch normalization at the final layer, but we do add
# a sigmoid activator to make the generated images crisper.
# Dimensions of g4: batch_size x 28 x 28 x 1
return g4
sess = tf.Session()
batch_size = 50
z_dimensions = 100
x_placeholder = tf.placeholder("float", shape = [None,28,28,1], name='x_placeholder')
# x_placeholder is for feeding input images to the discriminator
Gz = generator(batch_size, z_dimensions)
# Gz holds the generated images
Dx = discriminator(x_placeholder)
# Dx will hold discriminator prediction probabilities
# for the real MNIST images
Dg = discriminator(Gz, reuse=True)
# Dg will hold discriminator prediction probabilities for generated images
# == LOSSES AND OPTIMIZERS ==
g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=Dg, labels=tf.ones_like(Dg)))
d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=Dx, labels=tf.fill([batch_size, 1], 0.9)))
d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=Dg, labels=tf.zeros_like(Dg)))
d_loss = d_loss_real + d_loss_fake
tf.summary.scalar('Generator_loss', g_loss)
tf.summary.scalar('Discriminator_loss_real', d_loss_real)
tf.summary.scalar('Discriminator_loss_fake', d_loss_fake)
d_real_count_ph = tf.placeholder(tf.float32)
d_fake_count_ph = tf.placeholder(tf.float32)
g_count_ph = tf.placeholder(tf.float32)
tf.summary.scalar('d_real_count', d_real_count_ph)
tf.summary.scalar('d_fake_count', d_fake_count_ph)
tf.summary.scalar('g_count', g_count_ph)
images_for_tensorboard = generator(batch_size, z_dimensions)
tf.summary.image('Generated_images', images_for_tensorboard, 10)
merged = tf.summary.merge_all()
logdir = "tensorboard/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S") + "/"
writer = tf.summary.FileWriter(logdir, sess.graph)
tvars = tf.trainable_variables()
d_vars = [var for var in tvars if 'd_' in var.name]
g_vars = [var for var in tvars if 'g_' in var.name]
with tf.variable_scope(tf.get_variable_scope(), reuse=False) as scope:
# Discriminator training operations
d_trainer_fake = tf.train.AdamOptimizer(0.001).minimize(d_loss_fake, var_list=d_vars)
d_trainer_real = tf.train.AdamOptimizer(0.001).minimize(d_loss_real, var_list=d_vars)
# Generator training operations
g_trainer = tf.train.AdamOptimizer(0.004).minimize(g_loss, var_list=g_vars)
saver = tf.train.Saver(write_version=tf.train.SaverDef.V1)
sess.run(tf.global_variables_initializer())
# == TRAINING LOOP ==
gLoss = 1
dLossFake, dLossReal = 0, 0
d_real_count, d_fake_count, g_count = 0, 0, 0
for i in range(50000):
real_image_batch = mnist.train.next_batch(batch_size)[0].reshape([batch_size, 28, 28, 1])
if dLossFake > 0.7:
# Train discriminator on generated images
_, dLossReal, dLossFake, gLoss = sess.run([d_trainer_fake, d_loss_real, d_loss_fake, g_loss],
{x_placeholder: real_image_batch})
d_fake_count += 1
if gLoss > 0.5:
# Train the generator
_, dLossReal, dLossFake, gLoss = sess.run([g_trainer, d_loss_real, d_loss_fake, g_loss],
{x_placeholder: real_image_batch})
g_count += 1
if dLossReal > 0.45:
# If the discriminator classifies real images as fake,
# train discriminator on real values
_, dLossReal, dLossFake, gLoss = sess.run([d_trainer_real, d_loss_real, d_loss_fake, g_loss],
{x_placeholder: real_image_batch})
d_real_count += 1
if i % 10 == 0:
real_image_batch = mnist.validation.next_batch(batch_size)[0].reshape([batch_size, 28, 28, 1])
summary = sess.run(merged, {x_placeholder: real_image_batch, d_real_count_ph: d_real_count,
d_fake_count_ph: d_fake_count, g_count_ph: g_count})
writer.add_summary(summary, i)
d_real_count, d_fake_count, g_count = 0, 0, 0
if i % 5000 == 0:
save_path = saver.save(sess, "models/pretrained_gan.ckpt", global_step=i)
print("saved to %s" % save_path)