-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmotion_detector.py
67 lines (49 loc) · 2.11 KB
/
motion_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import cv2, time, pandas as pd
from datetime import datetime
first_frame = None #holds the initial image captured by the camera
status_list = [None, None]
times = [None, None] #holds the start/ end datetime movement was detected (created with null values to avoid index out of range error)
df = pd.DataFrame(columns=["Start", "End"])
video = cv2.VideoCapture(0)
while True:
#capture first frame, convert to greyscale and blur it
check, frame = video.read()
status = 0 #holds value to determine whether movement is detected: 0=no, 1=yes
grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
grey = cv2.GaussianBlur(grey, (21, 21), 0)
if first_frame is None:
first_frame = grey
continue
#calculate difference between first fram and current frame
delta_frame = cv2.absdiff(first_frame, grey)
thresh_frame = cv2.threshold(delta_frame, 30, 255, cv2.THRESH_BINARY)[1]
thresh_frame = cv2.dilate(thresh_frame, None, iterations=2)
(cnts,_) = cv2.findContours(thresh_frame.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
#detect movement by detecting any contours larger than 10000 pixels
for contour in cnts:
if cv2.contourArea(contour) < 10000:
continue
status = 1
(x, y, w, h) = cv2.boundingRect(contour)
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 3)
status_list.append(status)
if status_list[-1] == 1 and status_list[-2] == 0:
times.append(datetime.now())
if status_list[-1] == 0 and status_list[-2] == 1:
times.append(datetime.now())
cv2.imshow("Grey Frame", grey)
cv2.imshow("Delta Frame", delta_frame)
cv2.imshow("Threshold Frame", thresh_frame)
cv2.imshow("Colour Frame", frame)
key = cv2.waitKey(1)
if key == ord('q'):
#get time program ended if movement is currently detected
if status == 1:
times.append(datetime.now())
break
print(status)
for i in range(0, len(times), 2):
df = df.append({"Start":times[i], "End":times[i+1]}, ignore_index=True)
df.to_csv("Times.csv")
video.release()
cv2.destroyAllWindows()