-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfmri_alff.py
146 lines (117 loc) · 6.44 KB
/
fmri_alff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import numpy as np
import nibabel as nib
import nilearn
import nilearn.connectome
#import nipy.modalities.fmri.hrf
import sys
import argparse
from scipy.io import loadmat,savemat
import scipy.signal, scipy.interpolate
import sklearn
import os.path
import re
from utils import *
def argument_parse(argv):
parser=argparse.ArgumentParser(description='ALFF and fALFF *after* denoising')
parser.add_argument('--input',action='append',dest='inputvol',nargs='*')
parser.add_argument('--confoundfile',action='append',dest='confoundfile',nargs='*')
parser.add_argument('--outbase',action='append',dest='outbase',nargs='*')
parser.add_argument('--skipvols',action='store',dest='skipvols',type=int,default=5)
parser.add_argument('--lffrange',action='store',dest='lffrange',type=float,nargs=2) #,default=0.008)
parser.add_argument('--totalfreqrange',action='store',dest='totalfreqrange',type=float,nargs=2) #,default=0.008)
parser.add_argument('--repetitiontime','-tr',action='store',dest='tr',help='TR in seconds',type=float)
parser.add_argument('--outlierfile',action='append',dest='outlierfile',nargs='*')
parser.add_argument('--outputvolumeformat',action='store',dest='outputvolumeformat',choices=['same','auto','nii','nii.gz'],default='same')
parser.add_argument('--verbose',action='store_true',dest='verbose')
parser.add_argument('--version', action='version',version=package_version_dict(as_string=True))
return parser.parse_args(argv)
def fmri_alff(argv):
args=argument_parse(argv)
inputvol_list=flatarglist(args.inputvol)
outbase_list=flatarglist(args.outbase)
skipvols=args.skipvols
outlierfile_list=flatarglist(args.outlierfile)
confoundfile_list=flatarglist(args.confoundfile)
verbose=args.verbose
tr=args.tr
outputvolumeformat=args.outputvolumeformat
lffrange=np.sort(args.lffrange)
bpf=[-np.inf,np.inf]
if args.totalfreqrange:
bpf=np.sort(args.totalfreqrange)
do_filter_rolloff=True
is_pattern=False
input_list=inputvol_list
num_inputs=len(input_list)
print("Input time series: %s" % (inputvol_list))
print("Low-Frequency Fluctuation range Hz: [%s,%s]" % (lffrange[0],lffrange[1]))
print("Total frequency range Hz: [%s,%s]" % (bpf[0],bpf[1]))
print("Ignore first N volumes: %s" % (skipvols))
print("Confound file: %s" % (confoundfile_list))
print("Outlier timepoint file: %s" % (outlierfile_list))
print("Output basename: %s" % (outbase_list))
# read in confounds (from a confoundfile and/or specified motionparam and outlier arguments)
confounds_list=[{"gmreg":None,"wmreg":None,"csfreg":None,"mp":None,"resteffect":None,"outliermat":None} for i in range(num_inputs)]
#read in --confoundfile inputs for each input time series (if provided)
if len(confoundfile_list)==num_inputs:
for inputidx,confoundfile in enumerate(confoundfile_list):
if confoundfile.lower().endswith(".mat"):
M=loadmat(confoundfile)
confoundmat=M['confounds']
confoundnames=M['confoundnames']
else:
confoundmat=np.loadtxt(confoundfile)
fid = open(confoundfile, 'r')
line=fid.readline()
if not line or not line.startswith("#"):
print("Confound file does not contain confound names: %s" % (confoundfile) )
sys.exit(1)
confoundnames=line.strip().split("#")[-1].split()
fid.close()
outlieridx=[i for i,x in enumerate(confoundnames) if x.startswith("outlier.")]
if len(outlieridx)>0:
confounds_list[inputidx]["outliermat"]=confoundmat[:,outlieridx]
#read in --outlierfile inputs if provided, overwriting values from --confoundfile
if len(outlierfile_list)==num_inputs:
for inputidx,outlierfile in enumerate(outlierfile_list):
outliermat=np.loadtxt(outlierfile)>0
confounds_list[inputidx]["outliermat"]
for inputidx,inputfile in enumerate(input_list):
confounds_dict=confounds_list[inputidx]
Dt,roivals,roisizes,tr_input,vol_info,input_extension = load_input(inputfile)
if vol_info is not None and not outputvolumeformat in ["same","auto"]:
vol_info["extension"]=outputvolumeformat
print("Loaded input file: %s (%dx%d)" % (inputfile,Dt.shape[0],Dt.shape[1]))
if tr_input:
tr=tr_input
print("RepetitionTime (TR) from input file: %g (seconds)" % (tr))
else:
print("RepetitionTime (TR) from command-line argument: %g (seconds)" % (tr))
numvols=Dt.shape[0]
outliermat=np.zeros((numvols,1))
if confounds_dict["outliermat"] is not None:
outliermat=confounds_dict["outliermat"]
outliermat=np.sum(vec2columns(outliermat)!=0,axis=1)[:,None]
outliermat[:skipvols,:]=True
outliermat=vec2columns(outliermat)
numvols_not_outliers=np.sum(np.sum(np.abs(outliermat),axis=1)==0,axis=0)
print("Non-outlier volumes: ", numvols_not_outliers)
if do_filter_rolloff:
filter_edge_rolloff_size=int(36/tr/2)*2+1 #51 for tr=0.72
filter_edge_rolloff_std=3.6/tr #5 for tr=0.72
filter_edge_rolloff=scipy.signal.gaussian(filter_edge_rolloff_size,filter_edge_rolloff_std)
else:
filter_edge_rolloff=None
F, freq = nanfft(Dt,tr,outliermat=outliermat,inverse=False)
F=2*np.abs(F)/numvols_not_outliers
F[0,:]=0 #remove DC in case data is not detrended
#note: falff should be sum(lff)/sum(total) to be fractional
Nlff=sum((freq>=lffrange[0]) & (freq<=lffrange[1]))
ts_alff=np.mean(F[(freq>=lffrange[0]) & (freq<=lffrange[1]),:],axis=0)
ts_falff =ts_alff*Nlff / np.sum(F[(freq>=bpf[0]) & (freq<=bpf[1]),:],axis=0)
savedfilename, shapestring = save_timeseries(outbase_list[inputidx]+"_alff", input_extension, {"ts":ts_alff,"roi_labels":roivals,"roi_sizes":roisizes,"repetition_time":tr}, vol_info)
print("Saved %s (%s)" % (savedfilename,shapestring))
savedfilename, shapestring = save_timeseries(outbase_list[inputidx]+"_falff", input_extension, {"ts":ts_falff,"roi_labels":roivals,"roi_sizes":roisizes,"repetition_time":tr}, vol_info)
print("Saved %s (%s)" % (savedfilename,shapestring))
if __name__ == "__main__":
fmri_alff(sys.argv[1:])