-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfmri_rmsglobal.py
148 lines (119 loc) · 6.6 KB
/
fmri_rmsglobal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import numpy as np
import nibabel as nib
import sys
import argparse
from scipy.io import loadmat,savemat
import os.path
import re
from utils import *
def argument_parse(argv):
parser=argparse.ArgumentParser(description='Compute RMS of global signal fit to each region')
parser.add_argument('--inputnogsr',action='append',dest='inputnogsr',nargs='*')
parser.add_argument('--inputgsr',action='append',dest='inputgsr',nargs='*')
parser.add_argument('--confoundfile',action='append',dest='confoundfile',nargs='*')
parser.add_argument('--outbase',action='append',dest='outbase',nargs='*')
parser.add_argument('--skipvols',action='store',dest='skipvols',type=int,default=5)
parser.add_argument('--outlierfile',action='append',dest='outlierfile',nargs='*')
parser.add_argument('--mask',action='store',dest='maskfile',help='mask over which to compute connectivity strength (eg: gray matter voxels)',nargs='*')
parser.add_argument('--outputvolumeformat',action='store',dest='outputvolumeformat',choices=['same','auto','nii','nii.gz'],default='same')
parser.add_argument('--concat',action='store_true',dest='concat')
parser.add_argument('--verbose',action='store_true',dest='verbose')
return parser.parse_args(argv)
def run_rmsglobal(argv):
args=argument_parse(argv)
inputnogsr_list=flatarglist(args.inputnogsr)
inputgsr_list=flatarglist(args.inputgsr)
outbase_list=flatarglist(args.outbase)
skipvols=args.skipvols
outlierfile_list=flatarglist(args.outlierfile)
confoundfile_list=flatarglist(args.confoundfile)
maskfile_list=flatarglist(args.maskfile)
verbose=args.verbose
outputvolumeformat=args.outputvolumeformat
do_concat=args.concat
is_pattern=False
input_list=inputnogsr_list
num_inputs=len(input_list)
print("Input NON-GSR time series: %s" % (inputnogsr_list))
print("Input GSR time series: %s" % (inputgsr_list))
print("Ignore first N volumes: %s" % (skipvols))
print("Confound file: %s" % (confoundfile_list))
print("Outlier timepoint file: %s" % (outlierfile_list))
print("Output basename: %s" % (outbase_list))
print("Mask file: %s" % (maskfile_list))
# read in confounds (from a confoundfile and/or specified motionparam and outlier arguments)
confounds_list=[{"gmreg":None,"wmreg":None,"csfreg":None,"mp":None,"resteffect":None,"outliermat":None} for i in range(num_inputs)]
#read in --confoundfile inputs for each input time series (if provided)
if len(confoundfile_list)==num_inputs:
for inputidx,confoundfile in enumerate(confoundfile_list):
if confoundfile.lower().endswith(".mat"):
M=loadmat(confoundfile)
confoundmat=M['confounds']
confoundnames=M['confoundnames']
else:
confoundmat=np.loadtxt(confoundfile)
fid = open(confoundfile, 'r')
line=fid.readline()
if not line or not line.startswith("#"):
print("Confound file does not contain confound names: %s" % (confoundfile) )
sys.exit(1)
confoundnames=line.strip().split("#")[-1].split()
fid.close()
outlieridx=[i for i,x in enumerate(confoundnames) if x.startswith("outlier.")]
if len(outlieridx)>0:
confounds_list[inputidx]["outliermat"]=confoundmat[:,outlieridx]
#read in --outlierfile inputs if provided, overwriting values from --confoundfile
if len(outlierfile_list)==num_inputs:
for inputidx,outlierfile in enumerate(outlierfile_list):
outliermat=np.loadtxt(outlierfile)>0
confounds_list[inputidx]["outliermat"]
Dt_concat=[]
for inputidx,inputfile in enumerate(inputnogsr_list):
confounds_dict=confounds_list[inputidx]
Dt,roivals,roisizes,tr_input,vol_info,input_extension = load_input(inputfile)
if vol_info is not None and not outputvolumeformat in ["same","auto"]:
vol_info["extension"]=outputvolumeformat
Dt_gsr,roivals,roisizes,tr_input,vol_info,input_extension = load_input(inputgsr_list[inputidx])
Dt=Dt-Dt_gsr
print("Loaded input file: %s (%dx%d)" % (inputfile,Dt.shape[0],Dt.shape[1]))
if tr_input:
tr=tr_input
mask=None
if len(maskfile_list)==num_inputs:
maskfile=maskfile_list[inputidx]
mask,_,_,_,mask_vol_info,_ = load_input(maskfile)
masksize=list(mask.shape[:2])+[1]
print("Loaded mask file: %s (%s)" % (maskfile,"x".join([str(x) for x in masksize[:2]])))
if mask_vol_info is not None and vol_info is not None:
#map mask to full voxel space (and intersectc with input data mask)
mask_full=np.zeros(mask_vol_info['mask'].shape)
mask_full[mask_vol_info['mask']]=mask
mask_full=(mask_full*vol_info['mask'])>0
#then map mask from full voxel space to masked data space
mask=mask_full[vol_info['mask']>0]
vol_info['mask']=mask_full
Dt=Dt[:,mask]
else:
mask=None
numvols=Dt.shape[0]
outliermat=np.zeros((numvols,1))
if confounds_dict["outliermat"] is not None:
outliermat=confounds_dict["outliermat"]
outlierflat=np.sum(vec2columns(outliermat)!=0,axis=1)[:,None]
outlierflat[:skipvols,:]=True
outlierflat=outlierflat[:,0]
numvols_not_outliers=np.sum(np.abs(outlierflat)==0,axis=0)
print("Non-outlier volumes: ", numvols_not_outliers)
print("Masked data size after outlier exclusion: (%dx%d)" % (Dt.shape[0],Dt.shape[1]))
Dt_rms=np.sqrt(np.mean(Dt[outlierflat==0,:]**2,axis=0))
if do_concat:
Dt_concat+=[Dt_rms]
if len(outbase_list)==num_inputs:
savedfilename, shapestring = save_timeseries(outbase_list[inputidx]+"", input_extension, {"ts":Dt_rms,"roi_labels":roivals,"roi_sizes":roisizes,"repetition_time":tr}, vol_info)
print("Saved %s (%s)" % (savedfilename,shapestring))
if do_concat and len(Dt_concat)>1:
Dt_concat=np.mean(np.vstack(Dt_concat),axis=0)
savedfilename, shapestring = save_timeseries(outbase_list[0]+"", input_extension, {"ts":Dt_concat,"roi_labels":roivals,"roi_sizes":roisizes,"repetition_time":tr}, vol_info)
print("Saved %s (%s)" % (savedfilename,shapestring))
if __name__ == "__main__":
run_rmsglobal(sys.argv[1:])