-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
531 lines (461 loc) · 19.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
import numpy as np
import nibabel as nib
from scipy.io import loadmat,savemat
import scipy.signal, scipy.interpolate
import sys
import os.path
import pandas as pd
from nilearn import __version__ as nilearn_version
from scipy import __version__ as scipy_version
from numpy import __version__ as numpy_version
from nibabel import __version__ as nibabel_version
from _version import __version__, __version_date__
def flatlist(l):
if l is None:
return []
return [x for y in l for x in y]
def flatarglist(l):
if l is None:
return []
return flatlist([x.split(",") for x in flatlist(l)])
def addderiv(x):
#xd=np.vstack([np.zeros([1,x.shape[1]]),np.diff(x,axis=0)])
#add zeros AFTER deriv for consistency with CONN
xd=np.vstack([np.diff(x,axis=0),np.zeros([1,x.shape[1]])])
return np.hstack([x,xd])
def addsquare(x):
return np.hstack([x,np.square(x)])
def addderiv_txt(s):
if s is None:
return None
if isinstance(s,str):
s=[s]
return s+["deriv."+x for x in s]
def addsquare_txt(s):
if s is None:
return None
if isinstance(s,str):
s=[s]
return s+["sqr."+x for x in s]
def normalize(x,axis=0,denomfun='mean'):
xc=x-np.mean(x,axis=axis)
if denomfun=='mean':
xdenom=np.sqrt(np.mean(xc**2,axis=axis))
elif denomfun=='sum':
xdenom=np.sqrt(np.sum(xc**2,axis=axis))
xdenom[xdenom==0]=1
return xc/xdenom
def vec2columns(v):
if(v.ndim==1):
v=np.atleast_2d(v).T
if v.shape[1]==1:
if np.sum(v,axis=0)>0:
v_new=np.zeros((v.shape[0],int(np.sum(v!=0))))
for i,t in enumerate(np.nonzero(v>0)[0]):
v_new[t,i]=1
else:
v_new=np.zeros((v.shape[0],0))
else:
v_new=np.hstack([vec2columns(v[:,i]) for i in range(v.shape[1])])
return v_new
def convshift(g,x):
#for convolving BPF rectangle with a smoothing function (eg: gaussian)
return np.convolve(g/np.sum(g),np.hstack([x[::-1],x,x[::-1]]),'full')[x.shape[0]+int(g.shape[0]/2):][:x.shape[0]]
def naninterp(x,outliermat=None):
#linearly interpolate segments of data with nans (to allow fftfilt)
notnan=~np.any(np.isnan(x),axis=1)
if outliermat is not None:
notnan[np.sum(np.abs(outliermat),axis=1)>0]=False
notnanidx=np.where(notnan)[0]
return scipy.interpolate.interp1d(notnanidx,x[notnanidx,:],axis=0,bounds_error=False,fill_value=0)(np.arange(x.shape[0]))
def fftfilt(x,tr,filt,filter_edge_rolloff=None):
fy=np.fft.fft(np.vstack([x,x[::-1,:]]),axis=0)
f=np.arange(fy.shape[0])
f=np.minimum(f,fy.shape[0]-f)/(tr*fy.shape[0])
stopmask=(f<filt[0])|(f>=filt[1])
if filter_edge_rolloff is None:
fy[stopmask,:]=0
else:
passwin=convshift(filter_edge_rolloff,~stopmask)
fy *= np.atleast_2d(passwin).T
y=np.real(np.fft.ifft(fy,axis=0)[:x.shape[0],:])
return y
def nanfft(S,tr,outliermat=None,inverse=False):
#perform fft (or ifft) ignoring NaN or outlier timepoints
N=S.shape[0]
if inverse:
expsign=1
denom=N
else:
expsign=-1
denom=1
#build FFT basis set
n=np.atleast_2d(np.arange(N))
X=np.zeros((N,N),dtype=complex)
for k in range(N):
X[k,:]=np.exp(expsign*1j*2*np.pi*k*n/N)
notnan=~np.any(np.isnan(S),axis=1)
if outliermat is not None:
if outliermat.ndim > 1:
notnan[np.sum(np.abs(outliermat),axis=1)>0]=False
else:
notnan[outliermat!=0]=False
fy=X[:,notnan] @ S[notnan,:] / denom
f=np.arange(N)
f=np.minimum(f,N-f)/(tr*N)
return fy, f
def dctfilt(S,tr,filt,filter_edge_rolloff=None,outliermat=None):
N=S.shape[0]
f=np.arange(N)/(2*tr*N)
passmask=(f>=filt[0])&(f<filt[1])
if filter_edge_rolloff is not None:
passmask=convshift(filter_edge_rolloff,passmask)
#build DCT-II basis set
n=np.atleast_2d(np.arange(N))
X=np.zeros((N,N))
for k in range(N):
X[k,:]=np.cos((np.pi/N)*(n+.5)*k)
X[0,:]/=np.sqrt(2)
X*=np.sqrt(2/N)
#Xpass[~passmask]=0
Xpass=X*np.atleast_2d(passmask).T
notnan=~np.any(np.isnan(S),axis=1)
if outliermat is not None:
if outliermat.ndim > 1:
notnan[np.sum(np.abs(outliermat),axis=1)>0]=False
else:
notnan[outliermat!=0]=False
print("filter outliers: %d" % (np.sum(~notnan)))
#this way will leave nans where they were and only replace the non-nans
#Sfilt=np.nan*np.ones(S.shape)
#Sfilt=np.zeros(S.shape)
#Sfilt[notnan,:] = Xpass[:,notnan].T @ (X[:,notnan] @ S[notnan,:])
#this option automatically interpolates nan values AFTER DCT of non-nans
Sfilt = Xpass.T @ (X[:,notnan] @ S[notnan,:])
return Sfilt
def filename_split_extension(filepath, is_cifti=False):
filedir,filename=os.path.split(filepath)
if "." in filename:
if is_cifti:
dotparts=filename.split(".")
dotparts_nii=[i for i,x in enumerate(dotparts) if x.lower()=="nii"]
if len(dotparts_nii)==0:
extension=""
else:
extension=".".join(dotparts[dotparts_nii[-1]-1:])
else:
if filename.lower().endswith(".gz"):
extension=".".join(filename.split(".")[-2:])
else:
extension=filename.split(".")[-1]
if extension:
filebase=os.path.join(filedir,filename[:-len(extension)-1])
else:
filebase=filepath
else:
extension=""
filebase=filepath
return filebase,extension
def get_first_volume_3D(voldata):
if voldata.ndim == 4:
return voldata[:,:,:,0]
else:
return voldata
def load_input(filename):
tr=None
volinfo=None
roivals=None
roisizes=None
extension=None
if filename.lower().endswith(".mat"):
M=loadmat(filename)
Dt=M['ts']
if 'repetition_time' in M:
tr=M['repetition_time'][0]
roivals=M['roi_labels'][0]
roisizes=M['roi_sizes'][0]
extension="mat"
elif filename.lower().endswith(".nii.gz") or filename.lower().endswith(".nii"):
Vimg=nib.load(filename)
is_cifti=type(Vimg).__name__.lower().find("cifti")>=0
_, volext = filename_split_extension(filename,is_cifti=is_cifti)
V=Vimg.get_fdata()
eps=2*np.finfo(V.dtype).eps #mask by eps instead of 0
if is_cifti:
ax_idx=Vimg.header.mapped_indices
ax_names=[type(Vimg.header.get_axis(ax)).__name__ for ax in ax_idx]
time_axis=[ax for i,ax in enumerate(ax_idx) if ax_names[i].lower().find("seriesaxis")>=0]
non_brain_axis=[ax for i,ax in enumerate(ax_idx) if ax_names[i].lower().find("brainmodelaxis")<0 and ax_names[i].lower().find("parcelsaxis")<0]
if len(time_axis)>0:
time_axis=time_axis[-1]
elif len(non_brain_axis)>0:
time_axis=non_brain_axis[-1]
else:
Exception("No time axis found")
if time_axis < 0 or time_axis > 1:
raise Exception("Unknown time axis: %d. Should be 0 or 1" % (time_axis))
M=np.any(np.abs(V)>eps,axis=time_axis)
if time_axis == 0:
Dt=V[:,M>0]
elif time_axis == 1:
Dt=V[M>0,:].T
try:
tr=Vimg.header.get_axis(time_axis).step
except:
#for non SeriesAxis (eg: stacked dlabel axes), TR does not apply
tr=0
else:
#read normal nifti
if Vimg.ndim > 3:
M=np.any(np.abs(V)>eps,axis=3)
Dt=V[M>0].T
tr=Vimg.header['pixdim'][4]
time_axis=3
else:
M=np.abs(V)>eps
Dt=V[M>0].T
tr=Vimg.header['pixdim'][4]
time_axis=3
volinfo={'image':Vimg, 'shape':Vimg.shape, 'mask':M, "extension":volext, "is_cifti":is_cifti,"time_axis":time_axis}
extension=volext
elif filename.lower().endswith(".txt"):
Dt=np.loadtxt(filename)
fid = open(filename, 'r')
roivals=np.arange(1,Dt.shape[1]+1)
roisizes=np.ones(len(roivals))
while True:
line=fid.readline()
if not line or not line.startswith("#"):
break
if line.find("ROI_Labels:")>0:
roivals=fid.readline().strip().split("#")[-1].split()
continue
if line.find("ROI_Sizes")>0:
roisizes=fid.readline().strip().split("#")[-1].split()
continue
if line.find("Repetition_time(sec)")>0:
tr=float(line.strip().split("#")[-1])
continue
fid.close()
roivals=np.array([float(x) for x in roivals])
roisizes=np.array([float(x) for x in roisizes])
extension="txt"
else:
raise Exception("Unknown input data file type: %s" % (filename))
return Dt,roivals,roisizes,tr,volinfo,extension
def save_timeseries(filename_noext,outputformat,output_dict, output_volume_info=None):
filename_noext_input=filename_noext
outputformat_split=None
if outputformat is None:
filename_noext,outputformat=filename_split_extension(filename_noext)
outputformat_split=outputformat
outfilename=""
shapestring=""
if output_volume_info is not None:
if output_volume_info['is_cifti']:
Vimg_orig=output_volume_info['image']
outshape=list(Vimg_orig.shape)
if output_dict["ts"].ndim > 1:
outshape[output_volume_info['time_axis']]=output_dict["ts"].shape[0]
else:
output_dict["ts"]=np.atleast_2d(output_dict["ts"])
outshape[output_volume_info['time_axis']]=output_dict["ts"].shape[0]
#output_dtype=Vimg_orig.get_data_dtype()
output_dtype=np.float32
Vnew=np.zeros(outshape,dtype=output_dtype)
if output_volume_info['time_axis']==0:
Vnew[:,output_volume_info['mask']]=output_dict["ts"]
else:
Vnew[output_volume_info['mask'],:]=output_dict["ts"].T
new_header=Vimg_orig.header
time_axis_type=type(new_header.get_axis(output_volume_info['time_axis'])).__name__
if time_axis_type.lower().find("seriesaxis")>=0:
axlist=[output_volume_info['image'].header.get_axis(i) for i in output_volume_info['image'].header.mapped_indices]
axlist[output_volume_info['time_axis']].size=output_dict["ts"].shape[0]
new_header=nib.cifti2.cifti2.Cifti2Header.from_axes(axlist)
elif time_axis_type.lower().find("scalaraxis")>=0:
axlist=[output_volume_info['image'].header.get_axis(i) for i in output_volume_info['image'].header.mapped_indices]
if output_dict["ts"].shape[0] != output_volume_info['shape'][output_volume_info['time_axis']]:
namelist=["map%04d" % (x) for x in range(output_dict["ts"].shape[0])]
axlist[output_volume_info['time_axis']]=nib.cifti2.cifti2_axes.ScalarAxis(name=namelist)
new_header=nib.cifti2.cifti2.Cifti2Header.from_axes(axlist)
Vimg=nib.cifti2.cifti2.Cifti2Image(Vnew.astype(output_dtype),header=new_header)
else:
Vimg_orig=output_volume_info['image']
outshape=list(Vimg_orig.shape[:3])
if output_dict["ts"].ndim > 1:
outshape+=[output_dict["ts"].shape[0]]
#output_dtype=Vimg_orig.get_data_dtype()
output_dtype=np.float32
Vnew=np.zeros(outshape,dtype=output_dtype)
Vnew[output_volume_info['mask']]=output_dict["ts"].T
Vimg=nib.Nifti1Image(Vnew.astype(output_dtype),affine=Vimg_orig.affine,header=Vimg_orig.header)
if outputformat_split:
#redo filename split now that we know. whether "is_cifti" is available
filename_noext,outputformat=filename_split_extension(filename_noext_input,is_cifti=output_volume_info['is_cifti'])
outputformat_split=outputformat
ext=outputformat_split
else:
ext=output_volume_info["extension"]
outfilename=filename_noext+"."+ext
shapestring="x".join([str(x) for x in Vimg.shape])
nib.save(Vimg, outfilename)
else:
output_dict["ts"]=np.atleast_2d(output_dict["ts"])
shapestring="%dx%d" % (output_dict["ts"].shape[0],output_dict["ts"].shape[1])
if outputformat == "mat":
outfilename=filename_noext+"."+outputformat
savemat(outfilename,output_dict,format='5',do_compression=True)
else:
headertxt="ROI_Labels:\n"
headertxt+=" ".join(["%d" % (x) for x in output_dict["roi_labels"]])
headertxt+="\nROI_Sizes(voxels):\n"
headertxt+=" ".join(["%d" % (x) for x in output_dict["roi_sizes"]])
headertxt+="\nRepetition_time(sec): %g" % (output_dict["repetition_time"])
if "is_outlier" in output_dict:
headertxt+="\nOutlier_volumes:\n"
headertxt+=" ".join(["%d" % (x) for x in output_dict["is_outlier"]])
outfilename=filename_noext+"."+outputformat
np.savetxt(outfilename,output_dict["ts"],fmt="%.18f",header=headertxt,comments="# ")
return outfilename, shapestring
def prepadZero(x,n):
return np.vstack([np.zeros([n,x.shape[1]]),x])
############################
def params2matrix(P):
#adapted from spm's spm_matrix()
T = np.matrix([
[1, 0, 0, P[0]],
[0, 1, 0, P[1]],
[0, 0, 1, P[2]],
[0, 0, 0, 1]])
R1 = np.matrix([
[1, 0, 0, 0],
[0, np.cos(P[3]), np.sin(P[3]), 0],
[0, -np.sin(P[3]), np.cos(P[3]), 0],
[0, 0, 0, 1]])
R2 = np.matrix([
[np.cos(P[4]), 0, np.sin(P[4]), 0],
[0, 1, 0, 0],
[-np.sin(P[4]), 0, np.cos(P[4]), 0],
[0, 0, 0, 1]])
R3 = np.matrix([
[np.cos(P[5]), np.sin(P[5]), 0, 0],
[-np.sin(P[5]), np.cos(P[5]), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])
R = R1*R2*R3;
return T * R
def read_motion_params(movfile, movfile_type):
#read in motion parameters (HCP saved mmx,mmy,mmz, degx,degy,degz)
if not movfile:
raise Exception("Motion parameter file not specified")
if movfile_type=="spm":
mp=np.loadtxt(movfile)
print("Motion file %s is (%d,%d), SPM-style=(xmm,ymm,zmm,radx,rady,radz)" % (movfile,mp.shape[0],mp.shape[1]))
#already xmm,ymm,zmm,radx,rady,radz
mp=mp[:,:6]
elif movfile_type=="hcp":
mp=np.loadtxt(movfile)
print("Motion file %s is (%d,%d), HCP-style=(xmm,ymm,zmm,degx,degy,degz)" % (movfile,mp.shape[0],mp.shape[1]))
#convert from xmm,ymm,zmm,degx,degy,degz to rad
mp=mp[:,:6]
mp[:,3:6]=mp[:,3:6]*np.pi/180
elif movfile_type=="fsl":
mp=np.loadtxt(movfile)
print("Motion file %s is (%d,%d), FSL-style=(radx,rady,radz,xmm,ymm,zmm)" % (movfile,mp.shape[0],mp.shape[1]))
#swap mm and rad columns
mp=mp[:,[3,4,5,0,1,2]]
elif movfile_type=="fmriprep":
mp_dataframe=pd.read_table(movfile)
print("Motion file %s is (%d,%d), fMRIPrep-style=(trans_[xyz],rot_[xyz])=(xmm,ymm,zmm,radx,rady,radz)" % (movfile,mp_dataframe.shape[0],mp_dataframe.shape[1]))
mp=np.stack([
mp_dataframe['trans_x'],
mp_dataframe['trans_y'],
mp_dataframe['trans_z'],
mp_dataframe['rot_x'],
mp_dataframe['rot_y'],
mp_dataframe['rot_z']
],axis=-1)
else:
raise Exception("Unknown motion parameter file type: %s" % (movfile_type))
#already xmm,ymm,zmm,radx,rady,radz
mp_names=["motion.xmm","motion.ymm","motion.zmm","motion.xrad","motion.yrad","motion.zrad"]
return mp, mp_names
def save_connmatrix(filename_noext,outputformat,output_dict):
outfilename=""
shapestring="%dx%d" % (output_dict["C"].shape[0],output_dict["C"].shape[1])
if outputformat.startswith("."):
outputformat=outputformat[1:]
if outputformat.lower().endswith("mat"):
outfilename=filename_noext+"."+outputformat
savemat(outfilename,output_dict,format='5',do_compression=True)
else:
headertxt="ROI_Labels:\n"
headertxt+=" ".join(["%d" % (x) for x in output_dict["roi_labels"]])
headertxt+="\nROI_Sizes(voxels):\n"
headertxt+=" ".join(["%d" % (x) for x in output_dict["roi_sizes"]])
headertxt+="\nCovariance_estimator: %s" % (output_dict["cov_estimator"])
headertxt+="\nCovariance_shrinkage: %s" % (output_dict["shrinkage"])
outfilename=filename_noext+"."+outputformat
np.savetxt(outfilename,output_dict["C"],fmt="%.18f",header=headertxt,comments="# ")
return outfilename, shapestring
def load_connmatrix(filename):
conn_dict={}
if filename.lower().endswith(".mat"):
M=loadmat(filename,simplify_cells=True)
mfield_data_search=['C','FC','data']
mfield_data_search=[x.upper() for x in mfield_data_search]
for m in M:
if m.upper() in mfield_data_search:
conn_dict['C']=M[m]
break
mfield_search=['roi_labels','roi_sizes','cov_estimator','shrinkage']
for m in mfield_search:
if m in M:
conn_dict[m]=M[m]
else:
sep=None
if filename.lower().endswith(".csv"):
sep=","
with open(filename,'r') as fid:
commentlines=[s.strip() for s in fid.readlines() if s.startswith("#")]
for i,l in enumerate(commentlines):
if l.upper().startswith("# ROI_LABELS"):
labelstr=commentlines[i+1].replace("#","").split(sep)
conn_dict['roi_labels']=[int(x) for x in labelstr]
if l.upper().startswith("# ROI_SIZES"):
sizestr=commentlines[i+1].replace("#","").split(sep)
conn_dict['roi_sizes']=[float(x) for x in sizestr]
if l.upper().startswith("# COVARIANCE_ESTIMATOR"):
conn_dict['cov_estimator']=l.split(":")[-1].strip()
if l.upper().startswith("# COVARIANCE_SHRINKAGE"):
conn_dict['shrinkage']=float(l.split(":")[-1].strip())
conn_dict['C']=np.loadtxt(filename,comments='#')
if 'roi_labels' in conn_dict and len(conn_dict['roi_labels']) == conn_dict['C'].shape[0]:
roiidx=np.array(conn_dict['roi_labels'],dtype=int)-1
Cnew=np.zeros([max(roiidx)+1,max(roiidx)+1])
d=np.median(np.diag(conn_dict['C']))
np.fill_diagonal(Cnew,d)
Cnew[roiidx[:,None],roiidx]=conn_dict['C']
conn_dict['C']=Cnew
conn_dict['roi_labels']=np.arange(1,max(roiidx)+1)
return conn_dict
def get_version(include_date=False):
"""Return the version of this package"""
if include_date:
return __version__+" ("+__version_date__+")"
else:
return __version__
def package_version_dict(as_string=False):
"""Return a dictionary of package versions used by this package"""
versions={
'fmriclean': get_version(include_date=True),
'nilearn': nilearn_version,
'numpy': numpy_version,
'scipy': scipy_version,
'nibabel': nibabel_version
}
if as_string:
return "; ".join(["%s: %s" % (k,v) for k,v in versions.items()])
else:
return versions