|
| 1 | +// SPDX-FileCopyrightText: Copyright 2024 Kenji Koide |
| 2 | +// SPDX-License-Identifier: MIT |
| 3 | +#pragma once |
| 4 | + |
| 5 | +#include <cmath> |
| 6 | +#include <Eigen/Core> |
| 7 | +#include <small_gicp/points/traits.hpp> |
| 8 | +#include <small_gicp/ann/knn_result.hpp> |
| 9 | + |
| 10 | +namespace small_gicp { |
| 11 | + |
| 12 | +/// @brief Equirectangular projection. |
| 13 | +struct EquirectangularProjection { |
| 14 | +public: |
| 15 | + /// @brief Project the point into the normalized image coordinates. (u, v) in ([0, 1], [0, 1]) |
| 16 | + Eigen::Vector2d operator()(const Eigen::Vector3d& pt_3d) const { |
| 17 | + if (pt_3d.squaredNorm() < 1e-3) { |
| 18 | + return Eigen::Vector2d(0.5, 0.5); |
| 19 | + } |
| 20 | + |
| 21 | + const Eigen::Vector3d bearing = pt_3d.normalized(); |
| 22 | + const double lat = -std::asin(bearing[1]); |
| 23 | + const double lon = std::atan2(bearing[0], bearing[2]); |
| 24 | + |
| 25 | + return Eigen::Vector2d(lon / (2.0 * M_PI) + 0.5, lat / M_PI + 0.5); |
| 26 | + }; |
| 27 | +}; |
| 28 | + |
| 29 | +/// @brief Border clamp mode. Points out of the border are discarded. |
| 30 | +struct BorderClamp { |
| 31 | +public: |
| 32 | + int operator()(int x, int width) const { return x; } |
| 33 | +}; |
| 34 | + |
| 35 | +/// @brief Border repeat mode. Points out of the border are wrapped around. |
| 36 | +struct BorderRepeat { |
| 37 | +public: |
| 38 | + int operator()(int x, int width) const { return x < 0 ? x + width : (x >= width ? x - width : x); } |
| 39 | +}; |
| 40 | + |
| 41 | +/// @brief "Unsafe" projective search. This class does not hold the ownership of the target point cloud. |
| 42 | +template <typename PointCloud, typename Projection = EquirectangularProjection, typename BorderModeH = BorderRepeat, typename BorderModeV = BorderClamp> |
| 43 | +struct UnsafeProjectiveSearch { |
| 44 | +public: |
| 45 | + /// @brief Constructor. |
| 46 | + /// @param width Index map width |
| 47 | + /// @param height Index map height |
| 48 | + /// @param points Target point cloud |
| 49 | + UnsafeProjectiveSearch(int width, int height, const PointCloud& points) : points(points), index_map(height, width), search_window_h(10), search_window_v(5) { |
| 50 | + index_map.setConstant(invalid_index); |
| 51 | + |
| 52 | + Projection project; |
| 53 | + for (size_t i = 0; i < traits::size(points); ++i) { |
| 54 | + const Eigen::Vector4d pt = traits::point(points, i); |
| 55 | + const Eigen::Vector2d uv = project(pt.head<3>()); |
| 56 | + const int u = uv[0] * index_map.cols(); |
| 57 | + const int v = uv[1] * index_map.rows(); |
| 58 | + |
| 59 | + if (u < 0 || u >= index_map.cols() || v < 0 || v >= index_map.rows()) { |
| 60 | + continue; |
| 61 | + } |
| 62 | + index_map(v, u) = i; |
| 63 | + } |
| 64 | + } |
| 65 | + |
| 66 | + /// @brief Find the nearest neighbor. |
| 67 | + /// @param query Query point |
| 68 | + /// @param k_indices Index of the nearest neighbor (uninitialized if not found) |
| 69 | + /// @param k_sq_dists Squared distance to the nearest neighbor (uninitialized if not found) |
| 70 | + /// @param setting KNN search setting |
| 71 | + /// @return Number of found neighbors (0 or 1) |
| 72 | + size_t nearest_neighbor_search(const Eigen::Vector4d& query, size_t* k_indices, double* k_sq_dists, const KnnSetting& setting = KnnSetting()) const { |
| 73 | + return knn_search<1>(query, k_indices, k_sq_dists, setting); |
| 74 | + } |
| 75 | + |
| 76 | + /// @brief Find k-nearest neighbors. This method uses dynamic memory allocation. |
| 77 | + /// @param query Query point |
| 78 | + /// @param k Number of neighbors |
| 79 | + /// @param k_indices Indices of neighbors |
| 80 | + /// @param k_sq_dists Squared distances to neighbors (sorted in ascending order) |
| 81 | + /// @param setting KNN search setting |
| 82 | + /// @return Number of found neighbors |
| 83 | + size_t knn_search(const Eigen::Vector4d& query, int k, size_t* k_indices, double* k_sq_dists, const KnnSetting& setting = KnnSetting()) const { |
| 84 | + KnnResult<-1> result(k_indices, k_sq_dists, k); |
| 85 | + knn_search(query, result, setting); |
| 86 | + return result.num_found(); |
| 87 | + } |
| 88 | + |
| 89 | + /// @brief Find k-nearest neighbors. This method uses fixed and static memory allocation. Might be faster for small k. |
| 90 | + /// @param query Query point |
| 91 | + /// @param k_indices Indices of neighbors |
| 92 | + /// @param k_sq_dists Squared distances to neighbors (sorted in ascending order) |
| 93 | + /// @param setting KNN search setting |
| 94 | + /// @return Number of found neighbors |
| 95 | + template <int N> |
| 96 | + size_t knn_search(const Eigen::Vector4d& query, size_t* k_indices, double* k_sq_dists, const KnnSetting& setting = KnnSetting()) const { |
| 97 | + KnnResult<N> result(k_indices, k_sq_dists); |
| 98 | + knn_search(query, result, setting); |
| 99 | + return result.num_found(); |
| 100 | + } |
| 101 | + |
| 102 | +private: |
| 103 | + template <typename Result> |
| 104 | + void knn_search(const Eigen::Vector4d& query, Result& result, const KnnSetting& setting) const { |
| 105 | + BorderModeH border_h; |
| 106 | + BorderModeV border_v; |
| 107 | + |
| 108 | + Projection project; |
| 109 | + const Eigen::Vector2d uv = project(query.head<3>()); |
| 110 | + const int u = uv[0] * index_map.cols(); |
| 111 | + const int v = uv[1] * index_map.rows(); |
| 112 | + |
| 113 | + for (int dv = -search_window_v; dv <= search_window_v; dv++) { |
| 114 | + const int v_clamped = border_v(v + dv, index_map.rows()); |
| 115 | + if (v_clamped < 0 || v_clamped >= index_map.rows()) { |
| 116 | + continue; |
| 117 | + } |
| 118 | + |
| 119 | + for (int du = -search_window_h; du <= search_window_h; du++) { |
| 120 | + const int u_clamped = border_h(u + du, index_map.cols()); |
| 121 | + if (u_clamped < 0 || u_clamped >= index_map.cols()) { |
| 122 | + continue; |
| 123 | + } |
| 124 | + |
| 125 | + const auto index = index_map(v_clamped, u_clamped); |
| 126 | + if (index == invalid_index) { |
| 127 | + continue; |
| 128 | + } |
| 129 | + |
| 130 | + const double sq_dist = (traits::point(points, index) - query).squaredNorm(); |
| 131 | + result.push(index, sq_dist); |
| 132 | + |
| 133 | + if (setting.fulfilled(result)) { |
| 134 | + return; |
| 135 | + } |
| 136 | + } |
| 137 | + } |
| 138 | + } |
| 139 | + |
| 140 | +public: |
| 141 | + static constexpr std::uint32_t invalid_index = std::numeric_limits<std::uint32_t>::max(); |
| 142 | + |
| 143 | + const PointCloud& points; |
| 144 | + Eigen::Matrix<std::uint32_t, -1, -1> index_map; |
| 145 | + |
| 146 | + int search_window_h; |
| 147 | + int search_window_v; |
| 148 | +}; |
| 149 | + |
| 150 | +/// @brief "Safe" projective search. This class holds the ownership of the target point cloud. |
| 151 | +template <typename PointCloud, typename Projection = EquirectangularProjection, typename BorderModeH = BorderRepeat, typename BorderModeV = BorderClamp> |
| 152 | +struct ProjectiveSearch { |
| 153 | +public: |
| 154 | + using Ptr = std::shared_ptr<ProjectiveSearch<PointCloud, Projection>>; |
| 155 | + using ConstPtr = std::shared_ptr<const ProjectiveSearch<PointCloud, Projection>>; |
| 156 | + |
| 157 | + explicit ProjectiveSearch(int width, int height, std::shared_ptr<const PointCloud> points) : points(points), search(width, height, *points) {} |
| 158 | + |
| 159 | + /// @brief Find k-nearest neighbors. This method uses dynamic memory allocation. |
| 160 | + /// @param query Query point |
| 161 | + /// @param k Number of neighbors |
| 162 | + /// @param k_indices Indices of neighbors |
| 163 | + /// @param k_sq_dists Squared distances to neighbors (sorted in ascending order) |
| 164 | + /// @param setting KNN search setting |
| 165 | + /// @return Number of found neighbors |
| 166 | + size_t nearest_neighbor_search(const Eigen::Vector4d& query, size_t* k_indices, double* k_sq_dists, const KnnSetting& setting = KnnSetting()) const { |
| 167 | + return search.nearest_neighbor_search(query, k_indices, k_sq_dists, setting); |
| 168 | + } |
| 169 | + |
| 170 | + /// @brief Find k-nearest neighbors. This method uses dynamic memory allocation. |
| 171 | + /// @param query Query point |
| 172 | + /// @param k Number of neighbors |
| 173 | + /// @param k_indices Indices of neighbors |
| 174 | + /// @param k_sq_dists Squared distances to neighbors (sorted in ascending order) |
| 175 | + /// @param setting KNN search setting |
| 176 | + /// @return Number of found neighbors |
| 177 | + size_t knn_search(const Eigen::Vector4d& query, size_t k, size_t* k_indices, double* k_sq_dists, const KnnSetting& setting = KnnSetting()) const { |
| 178 | + return search.knn_search(query, k, k_indices, k_sq_dists, setting); |
| 179 | + } |
| 180 | + |
| 181 | +public: |
| 182 | + const std::shared_ptr<const PointCloud> points; ///< Points |
| 183 | + const UnsafeProjectiveSearch<PointCloud, Projection, BorderModeH, BorderModeV> search; ///< Search |
| 184 | +}; |
| 185 | + |
| 186 | +namespace traits { |
| 187 | + |
| 188 | +template <typename PointCloud, typename Projection, typename BorderModeH, typename BorderModeV> |
| 189 | +struct Traits<UnsafeProjectiveSearch<PointCloud, Projection, BorderModeH, BorderModeV>> { |
| 190 | + static size_t nearest_neighbor_search( |
| 191 | + const UnsafeProjectiveSearch<PointCloud, Projection, BorderModeH, BorderModeV>& tree, |
| 192 | + const Eigen::Vector4d& point, |
| 193 | + size_t* k_indices, |
| 194 | + double* k_sq_dists) { |
| 195 | + return tree.nearest_neighbor_search(point, k_indices, k_sq_dists); |
| 196 | + } |
| 197 | + |
| 198 | + static size_t |
| 199 | + knn_search(const UnsafeProjectiveSearch<PointCloud, Projection, BorderModeH, BorderModeV>& tree, const Eigen::Vector4d& point, size_t k, size_t* k_indices, double* k_sq_dists) { |
| 200 | + return tree.knn_search(point, k, k_indices, k_sq_dists); |
| 201 | + } |
| 202 | +}; |
| 203 | + |
| 204 | +template <typename PointCloud, typename Projection, typename BorderModeH, typename BorderModeV> |
| 205 | +struct Traits<ProjectiveSearch<PointCloud, Projection, BorderModeH, BorderModeV>> { |
| 206 | + static size_t |
| 207 | + nearest_neighbor_search(const ProjectiveSearch<PointCloud, Projection, BorderModeH, BorderModeV>& tree, const Eigen::Vector4d& point, size_t* k_indices, double* k_sq_dists) { |
| 208 | + return tree.nearest_neighbor_search(point, k_indices, k_sq_dists); |
| 209 | + } |
| 210 | + |
| 211 | + static size_t |
| 212 | + knn_search(const ProjectiveSearch<PointCloud, Projection, BorderModeH, BorderModeV>& tree, const Eigen::Vector4d& point, size_t k, size_t* k_indices, double* k_sq_dists) { |
| 213 | + return tree.knn_search(point, k, k_indices, k_sq_dists); |
| 214 | + } |
| 215 | +}; |
| 216 | + |
| 217 | +} // namespace traits |
| 218 | + |
| 219 | +} // namespace small_gicp |
0 commit comments