-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy patheval.py
217 lines (181 loc) · 8.72 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import argparse
import glob
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
from model_basics import load_model
from stats import AverageMeter
from train_utils import accuracy
from utils import get_binarized_mask, get_masked_images, inpaint
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('--casms-path', default='',
help='path to models that generate masks')
parser.add_argument('--resnets-path', default='',
help='if provided additional pre-trained models are loaded from the path and evaluated (it is assumed that these models are ResNet-50)')
parser.add_argument('--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('-b', '--batch-size', default=128, type=int,
help='mini-batch size (default: 128)')
parser.add_argument('--pot', default=1, type=float,
help='percent of validation set seen')
parser.add_argument('--toy', action='store_true',
help='evaluate toy (naive) saliency extractors')
parser.add_argument('--save-to-file', action='store_true',
help='save results in separate folders for each model (provide path with log-path)')
parser.add_argument('--log-path', default='',
help='directory for results (use save-to-file flag to save results)')
args = parser.parse_args()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print('Args:', args)
string_args = ''
for name in sorted(vars(args)):
string_args += name + '=' + str(getattr(args, name)) + ', '
def main():
global args
## create models
print("=> Loading models...")
classifiers = {}
torchvision_model_zoo_archs = ['densenet121', 'densenet169', 'densenet201', 'densenet161', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn', 'vgg19', 'vgg19_bn']
for name in torchvision_model_zoo_archs:
model = models.__dict__[name](pretrained=True)
if len(name) < 20:
name = name + ('.'*(20 - len(name)))
classifiers[name] = model.to(device).eval()
print("=> Model '{}' loaded.".format(name))
if len(args.resnets_path) > 0:
for path in glob.glob(os.path.join(args.resnets_path,'*')):
name = path.split('/')[-1].split('.')[0]
if len(name) < 20:
name = name + ('.'*(20 - len(name)))
classifiers[name] = models.resnet50()
classifiers[name] = torch.nn.DataParallel(classifiers[name])
checkpoint = torch.load(path)
classifiers[name].load_state_dict(checkpoint['state_dict'])
classifiers[name].to(device).eval()
print("=> Checkpoint found at '{}'\n=> Model '{}' loaded.".format(path, name))
## data loader without normalization
data_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(os.path.join(args.data, 'val'), transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
])),
batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=False)
agg_results = {}
if args.toy:
agg_results['zero'] = confuse(os.path.join(args.log_path, 'zero'), {'special': 'zero'}, classifiers, data_loader)
agg_results['one'] = confuse(os.path.join(args.log_path, 'one'), {'special': 'one'}, classifiers, data_loader)
agg_results['random56'] = confuse(os.path.join(args.log_path,'random56'), {'special': 'random56'}, classifiers, data_loader)
agg_results['random224'] = confuse(os.path.join(args.log_path, 'random224'), {'special': 'random224'}, classifiers, data_loader)
for path in glob.glob(os.path.join(args.casms_path, '*')):
model = load_model(path)
agg_results[model['name']] = confuse(os.path.join(args.log_path, model['name']), model, classifiers, data_loader)
print(agg_results)
def confuse(output_path, model, classifiers, data_loader):
## create an empty file and skip the evaluation if the file exists
if args.save_to_file:
if os.path.isfile(output_path):
print("=> Output ({}) exists. Skipping.".format(output_path))
return {'skipped': True}
open(output_path, 'a').close()
if 'special' in model.keys():
print("=> Special mode evaluation: {}.".format(model['special']))
## setup meters
masked_in_score = ScoreContainer(classifiers)
masked_out_score = ScoreContainer(classifiers)
inpainted_score = ScoreContainer(classifiers)
## initialize normalizer
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
## data loop
for i, (input, target) in enumerate(data_loader):
if i > len(data_loader)*args.pot:
print('')
break
if i % 10 == 1:
print('.', end='', flush=True)
if i + 10 >= len(data_loader)*args.pot: print('')
## compute continuous mask, thresholded mask and compare class predictions with targets
if 'special' in model.keys():
if model['special'] == 'zero':
binary_mask = torch.zeros(input.size(0), 1, 224, 224)
if model['special'] == 'one':
binary_mask = torch.ones(input.size(0), 1, 224, 224)
if model['special'] == 'random56':
binary_mask = torch.zeros(input.size(0), 1, 56, 56)
binary_mask.bernoulli_(0.5)
binary_mask = nn.Upsample(scale_factor=4, mode='nearest')(binary_mask)
if model['special'] == 'random224':
binary_mask = torch.zeros(input.size(0), 1, 224, 224)
binary_mask.bernoulli_(0.5)
else:
normalized_input = input.clone()
for id in range(input.size(0)):
normalize(normalized_input[id])
binary_mask = get_binarized_mask(normalized_input, model)
masked_in, masked_out = get_masked_images(input, binary_mask)
inpainted = inpaint(binary_mask, masked_out)
for id in range(input.size(0)):
normalize(masked_in[id])
normalize(masked_out[id])
normalize(inpainted[id])
## compute outputs on masked images
target = target.to(device)
for key in classifiers.keys():
with torch.no_grad():
masked_in_score.update(classifiers[key](masked_in.to(device)), target, key)
masked_out_score.update(classifiers[key](masked_out.to(device)), target, key)
inpainted_score.update(classifiers[key](inpainted.to(device)), target, key)
results = {}
results['masked_in'] = {}
results['masked_out'] = {}
results['inpainted'] = {}
for key in classifiers.keys():
results['masked_in'][key] = masked_in_score.getDictionary(key)
results['masked_out'][key] = masked_out_score.getDictionary(key)
results['inpainted'][key] = inpainted_score.getDictionary(key)
if args.save_to_file:
with open(output_path, 'a') as f:
f.write(str(results))
f.write('\n' + string_args)
print(results)
return results
class ScoreContainer(object):
def __init__(self, classifiers):
self.criterion = nn.CrossEntropyLoss().to(device)
self.losses = {}
self.top1 = {}
self.top5 = {}
self.ent = {}
for key in classifiers.keys():
self.losses[key] = AverageMeter()
self.top1[key] = AverageMeter()
self.top5[key] = AverageMeter()
self.ent[key] = AverageMeter()
def update(self, output, target, key):
with torch.no_grad():
loss = self.criterion(output, target)
self.losses[key].update(loss.item(), target.size(0))
t1, t5 = accuracy(output, target, topk=(1, 5))
self.top1[key].update(t1.item(), target.size(0))
self.top5[key].update(t5.item(), target.size(0))
log_prob = F.log_softmax(output,1)
prob = log_prob.exp()
entropy = -(log_prob * prob).sum(1).data
self.ent[key].update(entropy.mean().item(), target.size(0))
def getDictionary(self, key):
return {
'l': self.losses[key].avg,
't1': self.top1[key].avg,
't5': self.top5[key].avg,
'e': self.ent[key].avg
}
if __name__ == '__main__':
main()