-
Notifications
You must be signed in to change notification settings - Fork 381
/
Copy pathDiv.lean
717 lines (626 loc) · 31.3 KB
/
Div.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
/-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Johannes Hölzl, Scott Morrison, Jens Wagemaker
-/
import Mathlib.Algebra.Polynomial.Inductions
import Mathlib.Algebra.Polynomial.Monic
import Mathlib.RingTheory.Multiplicity
import Mathlib.RingTheory.Ideal.Operations
#align_import data.polynomial.div from "leanprover-community/mathlib"@"e1e7190efdcefc925cb36f257a8362ef22944204"
/-!
# Division of univariate polynomials
The main defs are `divByMonic` and `modByMonic`.
The compatibility between these is given by `modByMonic_add_div`.
We also define `rootMultiplicity`.
-/
noncomputable section
open BigOperators Polynomial
open Finset
namespace Polynomial
universe u v w z
variable {R : Type u} {S : Type v} {T : Type w} {A : Type z} {a b : R} {n : ℕ}
section Semiring
variable [Semiring R]
theorem X_dvd_iff {f : R[X]} : X ∣ f ↔ f.coeff 0 = 0 :=
⟨fun ⟨g, hfg⟩ => by rw [hfg, coeff_X_mul_zero], fun hf =>
⟨f.divX, by rw [← add_zero (X * f.divX), ← C_0, ← hf, X_mul_divX_add]⟩⟩
set_option linter.uppercaseLean3 false in
#align polynomial.X_dvd_iff Polynomial.X_dvd_iff
theorem X_pow_dvd_iff {f : R[X]} {n : ℕ} : X ^ n ∣ f ↔ ∀ d < n, f.coeff d = 0 :=
⟨fun ⟨g, hgf⟩ d hd => by
simp only [hgf, coeff_X_pow_mul', ite_eq_right_iff, not_le_of_lt hd, IsEmpty.forall_iff],
fun hd => by
induction' n with n hn
· simp [pow_zero, one_dvd]
· obtain ⟨g, hgf⟩ := hn fun d : ℕ => fun H : d < n => hd _ (Nat.lt_succ_of_lt H)
have := coeff_X_pow_mul g n 0
rw [zero_add, ← hgf, hd n (Nat.lt_succ_self n)] at this
obtain ⟨k, hgk⟩ := Polynomial.X_dvd_iff.mpr this.symm
use k
rwa [pow_succ, mul_assoc, ← hgk]⟩
set_option linter.uppercaseLean3 false in
#align polynomial.X_pow_dvd_iff Polynomial.X_pow_dvd_iff
variable {p q : R[X]}
theorem multiplicity_finite_of_degree_pos_of_monic (hp : (0 : WithBot ℕ) < degree p) (hmp : Monic p)
(hq : q ≠ 0) : multiplicity.Finite p q :=
have zn0 : (0 : R) ≠ 1 :=
haveI := Nontrivial.of_polynomial_ne hq
zero_ne_one
⟨natDegree q, fun ⟨r, hr⟩ => by
have hp0 : p ≠ 0 := fun hp0 => by simp [hp0] at hp
have hr0 : r ≠ 0 := fun hr0 => by subst hr0; simp [hq] at hr
have hpn1 : leadingCoeff p ^ (natDegree q + 1) = 1 := by simp [show _ = _ from hmp]
have hpn0' : leadingCoeff p ^ (natDegree q + 1) ≠ 0 := hpn1.symm ▸ zn0.symm
have hpnr0 : leadingCoeff (p ^ (natDegree q + 1)) * leadingCoeff r ≠ 0 := by
simp only [leadingCoeff_pow' hpn0', leadingCoeff_eq_zero, hpn1, one_pow, one_mul, Ne,
hr0, not_false_eq_true]
have hnp : 0 < natDegree p := Nat.cast_lt.1 <| by
rw [← degree_eq_natDegree hp0]; exact hp
have := congr_arg natDegree hr
rw [natDegree_mul' hpnr0, natDegree_pow' hpn0', add_mul, add_assoc] at this
exact
ne_of_lt
(lt_add_of_le_of_pos (le_mul_of_one_le_right (Nat.zero_le _) hnp)
(add_pos_of_pos_of_nonneg (by rwa [one_mul]) (Nat.zero_le _)))
this⟩
#align polynomial.multiplicity_finite_of_degree_pos_of_monic Polynomial.multiplicity_finite_of_degree_pos_of_monic
end Semiring
section Ring
variable [Ring R] {p q : R[X]}
theorem div_wf_lemma (h : degree q ≤ degree p ∧ p ≠ 0) (hq : Monic q) :
degree (p - q * (C (leadingCoeff p) * X ^ (natDegree p - natDegree q))) < degree p :=
have hp : leadingCoeff p ≠ 0 := mt leadingCoeff_eq_zero.1 h.2
have hq0 : q ≠ 0 := hq.ne_zero_of_polynomial_ne h.2
have hlt : natDegree q ≤ natDegree p :=
Nat.cast_le.1
(by rw [← degree_eq_natDegree h.2, ← degree_eq_natDegree hq0]; exact h.1)
degree_sub_lt
(by
rw [hq.degree_mul_comm, hq.degree_mul, degree_C_mul_X_pow _ hp, degree_eq_natDegree h.2,
degree_eq_natDegree hq0, ← Nat.cast_add, tsub_add_cancel_of_le hlt])
h.2 (by rw [leadingCoeff_monic_mul hq, leadingCoeff_mul_X_pow, leadingCoeff_C])
#align polynomial.div_wf_lemma Polynomial.div_wf_lemma
/-- See `divByMonic`. -/
noncomputable def divModByMonicAux : ∀ (_p : R[X]) {q : R[X]}, Monic q → R[X] × R[X]
| p, q, hq =>
letI := Classical.decEq R
if h : degree q ≤ degree p ∧ p ≠ 0 then
let z := C (leadingCoeff p) * X ^ (natDegree p - natDegree q)
have _wf := div_wf_lemma h hq
let dm := divModByMonicAux (p - q * z) hq
⟨z + dm.1, dm.2⟩
else ⟨0, p⟩
termination_by p => p
#align polynomial.div_mod_by_monic_aux Polynomial.divModByMonicAux
/-- `divByMonic` gives the quotient of `p` by a monic polynomial `q`. -/
def divByMonic (p q : R[X]) : R[X] :=
letI := Classical.decEq R
if hq : Monic q then (divModByMonicAux p hq).1 else 0
#align polynomial.div_by_monic Polynomial.divByMonic
/-- `modByMonic` gives the remainder of `p` by a monic polynomial `q`. -/
def modByMonic (p q : R[X]) : R[X] :=
letI := Classical.decEq R
if hq : Monic q then (divModByMonicAux p hq).2 else p
#align polynomial.mod_by_monic Polynomial.modByMonic
@[inherit_doc]
infixl:70 " /ₘ " => divByMonic
@[inherit_doc]
infixl:70 " %ₘ " => modByMonic
theorem degree_modByMonic_lt [Nontrivial R] :
∀ (p : R[X]) {q : R[X]} (_hq : Monic q), degree (p %ₘ q) < degree q
| p, q, hq =>
letI := Classical.decEq R
if h : degree q ≤ degree p ∧ p ≠ 0 then by
have _wf := div_wf_lemma ⟨h.1, h.2⟩ hq
have :=
degree_modByMonic_lt (p - q * (C (leadingCoeff p) * X ^ (natDegree p - natDegree q))) hq
unfold modByMonic at this ⊢
unfold divModByMonicAux
dsimp
rw [dif_pos hq] at this ⊢
rw [if_pos h]
exact this
else
Or.casesOn (not_and_or.1 h)
(by
unfold modByMonic divModByMonicAux
dsimp
rw [dif_pos hq, if_neg h]
exact lt_of_not_ge)
(by
intro hp
unfold modByMonic divModByMonicAux
dsimp
rw [dif_pos hq, if_neg h, Classical.not_not.1 hp]
exact lt_of_le_of_ne bot_le (Ne.symm (mt degree_eq_bot.1 hq.ne_zero)))
termination_by p => p
#align polynomial.degree_mod_by_monic_lt Polynomial.degree_modByMonic_lt
theorem natDegree_modByMonic_lt (p : R[X]) {q : R[X]} (hmq : Monic q) (hq : q ≠ 1) :
natDegree (p %ₘ q) < q.natDegree := by
by_cases hpq : p %ₘ q = 0
· rw [hpq, natDegree_zero, Nat.pos_iff_ne_zero]
contrapose! hq
exact eq_one_of_monic_natDegree_zero hmq hq
· haveI := Nontrivial.of_polynomial_ne hpq
exact natDegree_lt_natDegree hpq (degree_modByMonic_lt p hmq)
@[simp]
theorem zero_modByMonic (p : R[X]) : 0 %ₘ p = 0 := by
classical
unfold modByMonic divModByMonicAux
dsimp
by_cases hp : Monic p
· rw [dif_pos hp, if_neg (mt And.right (not_not_intro rfl))]
· rw [dif_neg hp]
#align polynomial.zero_mod_by_monic Polynomial.zero_modByMonic
@[simp]
theorem zero_divByMonic (p : R[X]) : 0 /ₘ p = 0 := by
classical
unfold divByMonic divModByMonicAux
dsimp
by_cases hp : Monic p
· rw [dif_pos hp, if_neg (mt And.right (not_not_intro rfl))]
· rw [dif_neg hp]
#align polynomial.zero_div_by_monic Polynomial.zero_divByMonic
@[simp]
theorem modByMonic_zero (p : R[X]) : p %ₘ 0 = p :=
letI := Classical.decEq R
if h : Monic (0 : R[X]) then by
haveI := monic_zero_iff_subsingleton.mp h
simp [eq_iff_true_of_subsingleton]
else by unfold modByMonic divModByMonicAux; rw [dif_neg h]
#align polynomial.mod_by_monic_zero Polynomial.modByMonic_zero
@[simp]
theorem divByMonic_zero (p : R[X]) : p /ₘ 0 = 0 :=
letI := Classical.decEq R
if h : Monic (0 : R[X]) then by
haveI := monic_zero_iff_subsingleton.mp h
simp [eq_iff_true_of_subsingleton]
else by unfold divByMonic divModByMonicAux; rw [dif_neg h]
#align polynomial.div_by_monic_zero Polynomial.divByMonic_zero
theorem divByMonic_eq_of_not_monic (p : R[X]) (hq : ¬Monic q) : p /ₘ q = 0 :=
dif_neg hq
#align polynomial.div_by_monic_eq_of_not_monic Polynomial.divByMonic_eq_of_not_monic
theorem modByMonic_eq_of_not_monic (p : R[X]) (hq : ¬Monic q) : p %ₘ q = p :=
dif_neg hq
#align polynomial.mod_by_monic_eq_of_not_monic Polynomial.modByMonic_eq_of_not_monic
theorem modByMonic_eq_self_iff [Nontrivial R] (hq : Monic q) : p %ₘ q = p ↔ degree p < degree q :=
⟨fun h => h ▸ degree_modByMonic_lt _ hq, fun h => by
classical
have : ¬degree q ≤ degree p := not_le_of_gt h
unfold modByMonic divModByMonicAux; dsimp; rw [dif_pos hq, if_neg (mt And.left this)]⟩
#align polynomial.mod_by_monic_eq_self_iff Polynomial.modByMonic_eq_self_iff
theorem degree_modByMonic_le (p : R[X]) {q : R[X]} (hq : Monic q) : degree (p %ₘ q) ≤ degree q := by
nontriviality R
exact (degree_modByMonic_lt _ hq).le
#align polynomial.degree_mod_by_monic_le Polynomial.degree_modByMonic_le
theorem natDegree_modByMonic_le (p : Polynomial R) {g : Polynomial R} (hg : g.Monic) :
natDegree (p %ₘ g) ≤ g.natDegree :=
natDegree_le_natDegree (degree_modByMonic_le p hg)
theorem X_dvd_sub_C : X ∣ p - C (p.coeff 0) := by
simp [X_dvd_iff, coeff_C]
theorem modByMonic_eq_sub_mul_div :
∀ (p : R[X]) {q : R[X]} (_hq : Monic q), p %ₘ q = p - q * (p /ₘ q)
| p, q, hq =>
letI := Classical.decEq R
if h : degree q ≤ degree p ∧ p ≠ 0 then by
have _wf := div_wf_lemma h hq
have ih := modByMonic_eq_sub_mul_div
(p - q * (C (leadingCoeff p) * X ^ (natDegree p - natDegree q))) hq
unfold modByMonic divByMonic divModByMonicAux
dsimp
rw [dif_pos hq, if_pos h]
rw [modByMonic, dif_pos hq] at ih
refine' ih.trans _
unfold divByMonic
rw [dif_pos hq, dif_pos hq, if_pos h, mul_add, sub_add_eq_sub_sub]
else by
unfold modByMonic divByMonic divModByMonicAux
dsimp
rw [dif_pos hq, if_neg h, dif_pos hq, if_neg h, mul_zero, sub_zero]
termination_by p => p
#align polynomial.mod_by_monic_eq_sub_mul_div Polynomial.modByMonic_eq_sub_mul_div
theorem modByMonic_add_div (p : R[X]) {q : R[X]} (hq : Monic q) : p %ₘ q + q * (p /ₘ q) = p :=
eq_sub_iff_add_eq.1 (modByMonic_eq_sub_mul_div p hq)
#align polynomial.mod_by_monic_add_div Polynomial.modByMonic_add_div
theorem divByMonic_eq_zero_iff [Nontrivial R] (hq : Monic q) : p /ₘ q = 0 ↔ degree p < degree q :=
⟨fun h => by
have := modByMonic_add_div p hq;
rwa [h, mul_zero, add_zero, modByMonic_eq_self_iff hq] at this,
fun h => by
classical
have : ¬degree q ≤ degree p := not_le_of_gt h
unfold divByMonic divModByMonicAux; dsimp; rw [dif_pos hq, if_neg (mt And.left this)]⟩
#align polynomial.div_by_monic_eq_zero_iff Polynomial.divByMonic_eq_zero_iff
theorem degree_add_divByMonic (hq : Monic q) (h : degree q ≤ degree p) :
degree q + degree (p /ₘ q) = degree p := by
nontriviality R
have hdiv0 : p /ₘ q ≠ 0 := by rwa [Ne, divByMonic_eq_zero_iff hq, not_lt]
have hlc : leadingCoeff q * leadingCoeff (p /ₘ q) ≠ 0 := by
rwa [Monic.def.1 hq, one_mul, Ne, leadingCoeff_eq_zero]
have hmod : degree (p %ₘ q) < degree (q * (p /ₘ q)) :=
calc
degree (p %ₘ q) < degree q := degree_modByMonic_lt _ hq
_ ≤ _ := by
rw [degree_mul' hlc, degree_eq_natDegree hq.ne_zero, degree_eq_natDegree hdiv0, ←
Nat.cast_add, Nat.cast_le]
exact Nat.le_add_right _ _
calc
degree q + degree (p /ₘ q) = degree (q * (p /ₘ q)) := Eq.symm (degree_mul' hlc)
_ = degree (p %ₘ q + q * (p /ₘ q)) := (degree_add_eq_right_of_degree_lt hmod).symm
_ = _ := congr_arg _ (modByMonic_add_div _ hq)
#align polynomial.degree_add_div_by_monic Polynomial.degree_add_divByMonic
theorem degree_divByMonic_le (p q : R[X]) : degree (p /ₘ q) ≤ degree p :=
letI := Classical.decEq R
if hp0 : p = 0 then by simp only [hp0, zero_divByMonic, le_refl]
else
if hq : Monic q then
if h : degree q ≤ degree p then by
haveI := Nontrivial.of_polynomial_ne hp0;
rw [← degree_add_divByMonic hq h, degree_eq_natDegree hq.ne_zero,
degree_eq_natDegree (mt (divByMonic_eq_zero_iff hq).1 (not_lt.2 h))];
exact WithBot.coe_le_coe.2 (Nat.le_add_left _ _)
else by
unfold divByMonic divModByMonicAux;
simp [dif_pos hq, h, false_and_iff, if_false, degree_zero, bot_le]
else (divByMonic_eq_of_not_monic p hq).symm ▸ bot_le
#align polynomial.degree_div_by_monic_le Polynomial.degree_divByMonic_le
theorem degree_divByMonic_lt (p : R[X]) {q : R[X]} (hq : Monic q) (hp0 : p ≠ 0)
(h0q : 0 < degree q) : degree (p /ₘ q) < degree p :=
if hpq : degree p < degree q then by
haveI := Nontrivial.of_polynomial_ne hp0
rw [(divByMonic_eq_zero_iff hq).2 hpq, degree_eq_natDegree hp0]
exact WithBot.bot_lt_coe _
else by
haveI := Nontrivial.of_polynomial_ne hp0
rw [← degree_add_divByMonic hq (not_lt.1 hpq), degree_eq_natDegree hq.ne_zero,
degree_eq_natDegree (mt (divByMonic_eq_zero_iff hq).1 hpq)]
exact
Nat.cast_lt.2
(Nat.lt_add_of_pos_left (Nat.cast_lt.1 <|
by simpa [degree_eq_natDegree hq.ne_zero] using h0q))
#align polynomial.degree_div_by_monic_lt Polynomial.degree_divByMonic_lt
theorem natDegree_divByMonic (f : R[X]) {g : R[X]} (hg : g.Monic) :
natDegree (f /ₘ g) = natDegree f - natDegree g := by
nontriviality R
by_cases hfg : f /ₘ g = 0
· rw [hfg, natDegree_zero]
rw [divByMonic_eq_zero_iff hg] at hfg
rw [tsub_eq_zero_iff_le.mpr (natDegree_le_natDegree <| le_of_lt hfg)]
have hgf := hfg
rw [divByMonic_eq_zero_iff hg] at hgf
push_neg at hgf
have := degree_add_divByMonic hg hgf
have hf : f ≠ 0 := by
intro hf
apply hfg
rw [hf, zero_divByMonic]
rw [degree_eq_natDegree hf, degree_eq_natDegree hg.ne_zero, degree_eq_natDegree hfg,
← Nat.cast_add, Nat.cast_inj] at this
rw [← this, add_tsub_cancel_left]
#align polynomial.nat_degree_div_by_monic Polynomial.natDegree_divByMonic
theorem div_modByMonic_unique {f g} (q r : R[X]) (hg : Monic g)
(h : r + g * q = f ∧ degree r < degree g) : f /ₘ g = q ∧ f %ₘ g = r := by
nontriviality R
have h₁ : r - f %ₘ g = -g * (q - f /ₘ g) :=
eq_of_sub_eq_zero
(by
rw [← sub_eq_zero_of_eq (h.1.trans (modByMonic_add_div f hg).symm)]
simp [mul_add, mul_comm, sub_eq_add_neg, add_comm, add_left_comm, add_assoc])
have h₂ : degree (r - f %ₘ g) = degree (g * (q - f /ₘ g)) := by simp [h₁]
have h₄ : degree (r - f %ₘ g) < degree g :=
calc
degree (r - f %ₘ g) ≤ max (degree r) (degree (f %ₘ g)) := degree_sub_le _ _
_ < degree g := max_lt_iff.2 ⟨h.2, degree_modByMonic_lt _ hg⟩
have h₅ : q - f /ₘ g = 0 :=
_root_.by_contradiction fun hqf =>
not_le_of_gt h₄ <|
calc
degree g ≤ degree g + degree (q - f /ₘ g) := by
erw [degree_eq_natDegree hg.ne_zero, degree_eq_natDegree hqf, WithBot.coe_le_coe]
exact Nat.le_add_right _ _
_ = degree (r - f %ₘ g) := by rw [h₂, degree_mul']; simpa [Monic.def.1 hg]
exact ⟨Eq.symm <| eq_of_sub_eq_zero h₅, Eq.symm <| eq_of_sub_eq_zero <| by simpa [h₅] using h₁⟩
#align polynomial.div_mod_by_monic_unique Polynomial.div_modByMonic_unique
theorem map_mod_divByMonic [Ring S] (f : R →+* S) (hq : Monic q) :
(p /ₘ q).map f = p.map f /ₘ q.map f ∧ (p %ₘ q).map f = p.map f %ₘ q.map f := by
nontriviality S
haveI : Nontrivial R := f.domain_nontrivial
have : map f p /ₘ map f q = map f (p /ₘ q) ∧ map f p %ₘ map f q = map f (p %ₘ q) :=
div_modByMonic_unique ((p /ₘ q).map f) _ (hq.map f)
⟨Eq.symm <| by rw [← Polynomial.map_mul, ← Polynomial.map_add, modByMonic_add_div _ hq],
calc
_ ≤ degree (p %ₘ q) := degree_map_le _ _
_ < degree q := degree_modByMonic_lt _ hq
_ = _ :=
Eq.symm <|
degree_map_eq_of_leadingCoeff_ne_zero _
(by rw [Monic.def.1 hq, f.map_one]; exact one_ne_zero)⟩
exact ⟨this.1.symm, this.2.symm⟩
#align polynomial.map_mod_div_by_monic Polynomial.map_mod_divByMonic
theorem map_divByMonic [Ring S] (f : R →+* S) (hq : Monic q) :
(p /ₘ q).map f = p.map f /ₘ q.map f :=
(map_mod_divByMonic f hq).1
#align polynomial.map_div_by_monic Polynomial.map_divByMonic
theorem map_modByMonic [Ring S] (f : R →+* S) (hq : Monic q) :
(p %ₘ q).map f = p.map f %ₘ q.map f :=
(map_mod_divByMonic f hq).2
#align polynomial.map_mod_by_monic Polynomial.map_modByMonic
theorem modByMonic_eq_zero_iff_dvd (hq : Monic q) : p %ₘ q = 0 ↔ q ∣ p :=
⟨fun h => by rw [← modByMonic_add_div p hq, h, zero_add]; exact dvd_mul_right _ _, fun h => by
nontriviality R
obtain ⟨r, hr⟩ := exists_eq_mul_right_of_dvd h
by_contra hpq0
have hmod : p %ₘ q = q * (r - p /ₘ q) := by rw [modByMonic_eq_sub_mul_div _ hq, mul_sub, ← hr]
have : degree (q * (r - p /ₘ q)) < degree q := hmod ▸ degree_modByMonic_lt _ hq
have hrpq0 : leadingCoeff (r - p /ₘ q) ≠ 0 := fun h =>
hpq0 <|
leadingCoeff_eq_zero.1
(by rw [hmod, leadingCoeff_eq_zero.1 h, mul_zero, leadingCoeff_zero])
have hlc : leadingCoeff q * leadingCoeff (r - p /ₘ q) ≠ 0 := by rwa [Monic.def.1 hq, one_mul]
rw [degree_mul' hlc, degree_eq_natDegree hq.ne_zero,
degree_eq_natDegree (mt leadingCoeff_eq_zero.2 hrpq0)] at this
exact not_lt_of_ge (Nat.le_add_right _ _) (WithBot.some_lt_some.1 this)⟩
#align polynomial.dvd_iff_mod_by_monic_eq_zero Polynomial.modByMonic_eq_zero_iff_dvd
@[deprecated] alias dvd_iff_modByMonic_eq_zero := modByMonic_eq_zero_iff_dvd -- 2024-03-23
/-- See `Polynomial.mul_left_modByMonic` for the other multiplication order. That version, unlike
this one, requires commutativity. -/
@[simp]
lemma self_mul_modByMonic (hq : q.Monic) : (q * p) %ₘ q = 0 := by
rw [modByMonic_eq_zero_iff_dvd hq]
exact dvd_mul_right q p
theorem map_dvd_map [Ring S] (f : R →+* S) (hf : Function.Injective f) {x y : R[X]}
(hx : x.Monic) : x.map f ∣ y.map f ↔ x ∣ y := by
rw [← modByMonic_eq_zero_iff_dvd hx, ← modByMonic_eq_zero_iff_dvd (hx.map f), ←
map_modByMonic f hx]
exact
⟨fun H => map_injective f hf <| by rw [H, Polynomial.map_zero], fun H => by
rw [H, Polynomial.map_zero]⟩
#align polynomial.map_dvd_map Polynomial.map_dvd_map
@[simp]
theorem modByMonic_one (p : R[X]) : p %ₘ 1 = 0 :=
(modByMonic_eq_zero_iff_dvd (by convert monic_one (R := R))).2 (one_dvd _)
#align polynomial.mod_by_monic_one Polynomial.modByMonic_one
@[simp]
theorem divByMonic_one (p : R[X]) : p /ₘ 1 = p := by
conv_rhs => rw [← modByMonic_add_div p monic_one]; simp
#align polynomial.div_by_monic_one Polynomial.divByMonic_one
theorem sum_modByMonic_coeff (hq : q.Monic) {n : ℕ} (hn : q.degree ≤ n) :
(∑ i : Fin n, monomial i ((p %ₘ q).coeff i)) = p %ₘ q := by
nontriviality R
exact
(sum_fin (fun i c => monomial i c) (by simp) ((degree_modByMonic_lt _ hq).trans_le hn)).trans
(sum_monomial_eq _)
#align polynomial.sum_mod_by_monic_coeff Polynomial.sum_modByMonic_coeff
theorem mul_div_mod_by_monic_cancel_left (p : R[X]) {q : R[X]} (hmo : q.Monic) :
q * p /ₘ q = p := by
nontriviality R
refine' (div_modByMonic_unique _ 0 hmo ⟨by rw [zero_add], _⟩).1
rw [degree_zero]
exact Ne.bot_lt fun h => hmo.ne_zero (degree_eq_bot.1 h)
#align polynomial.mul_div_mod_by_monic_cancel_left Polynomial.mul_div_mod_by_monic_cancel_left
lemma coeff_divByMonic_X_sub_C_rec (p : R[X]) (a : R) (n : ℕ) :
(p /ₘ (X - C a)).coeff n = coeff p (n + 1) + a * (p /ₘ (X - C a)).coeff (n + 1) := by
nontriviality R
have := monic_X_sub_C a
set q := p /ₘ (X - C a)
rw [← p.modByMonic_add_div this]
have : degree (p %ₘ (X - C a)) < ↑(n + 1) := degree_X_sub_C a ▸ p.degree_modByMonic_lt this
|>.trans_le <| WithBot.coe_le_coe.mpr le_add_self
simp [sub_mul, add_sub, coeff_eq_zero_of_degree_lt this]
theorem coeff_divByMonic_X_sub_C (p : R[X]) (a : R) (n : ℕ) :
(p /ₘ (X - C a)).coeff n = ∑ i in Icc (n + 1) p.natDegree, a ^ (i - (n + 1)) * p.coeff i := by
wlog h : p.natDegree ≤ n generalizing n
· refine Nat.decreasingInduction' (fun n hn _ ih ↦ ?_) (le_of_not_le h) ?_
· rw [coeff_divByMonic_X_sub_C_rec, ih, eq_comm, Icc_eq_cons_Ioc (Nat.succ_le.mpr hn),
sum_cons, Nat.sub_self, pow_zero, one_mul, mul_sum]
congr 1; refine sum_congr ?_ fun i hi ↦ ?_
· ext; simp [Nat.succ_le]
rw [← mul_assoc, ← pow_succ', eq_comm, i.sub_succ', Nat.sub_add_cancel]
apply Nat.le_sub_of_add_le
rw [add_comm]; exact (mem_Icc.mp hi).1
· exact this _ le_rfl
rw [Icc_eq_empty (Nat.lt_succ.mpr h).not_le, sum_empty]
nontriviality R
by_cases hp : p.natDegree = 0
· rw [(divByMonic_eq_zero_iff <| monic_X_sub_C a).mpr, coeff_zero]
apply degree_lt_degree; rw [hp, natDegree_X_sub_C]; norm_num
· apply coeff_eq_zero_of_natDegree_lt
rw [natDegree_divByMonic p (monic_X_sub_C a), natDegree_X_sub_C]
exact (Nat.pred_lt hp).trans_le h
variable (R) in
theorem not_isField : ¬IsField R[X] := by
nontriviality R
intro h
letI := h.toField
simpa using congr_arg natDegree (monic_X.eq_one_of_isUnit <| monic_X (R := R).ne_zero.isUnit)
#align polynomial.not_is_field Polynomial.not_isField
section multiplicity
/-- An algorithm for deciding polynomial divisibility.
The algorithm is "compute `p %ₘ q` and compare to `0`".
See `polynomial.modByMonic` for the algorithm that computes `%ₘ`.
-/
def decidableDvdMonic [DecidableEq R] (p : R[X]) (hq : Monic q) : Decidable (q ∣ p) :=
decidable_of_iff (p %ₘ q = 0) (modByMonic_eq_zero_iff_dvd hq)
#align polynomial.decidable_dvd_monic Polynomial.decidableDvdMonic
theorem multiplicity_X_sub_C_finite (a : R) (h0 : p ≠ 0) : multiplicity.Finite (X - C a) p := by
haveI := Nontrivial.of_polynomial_ne h0
refine' multiplicity_finite_of_degree_pos_of_monic _ (monic_X_sub_C _) h0
rw [degree_X_sub_C]
decide
set_option linter.uppercaseLean3 false in
#align polynomial.multiplicity_X_sub_C_finite Polynomial.multiplicity_X_sub_C_finite
/- Porting note: stripping out classical for decidability instance parameter might
make for better ergonomics -/
/-- The largest power of `X - C a` which divides `p`.
This *could be* computable via the divisibility algorithm `Polynomial.decidableDvdMonic`,
as shown by `Polynomial.rootMultiplicity_eq_nat_find_of_nonzero` which has a computable RHS. -/
def rootMultiplicity (a : R) (p : R[X]) : ℕ :=
letI := Classical.decEq R
if h0 : p = 0 then 0
else
let _ : DecidablePred fun n : ℕ => ¬(X - C a) ^ (n + 1) ∣ p := fun n =>
@Not.decidable _ (decidableDvdMonic p ((monic_X_sub_C a).pow (n + 1)))
Nat.find (multiplicity_X_sub_C_finite a h0)
#align polynomial.root_multiplicity Polynomial.rootMultiplicity
/- Porting note: added the following due to diamond with decidableProp and
decidableDvdMonic see also [Zulip]
(https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/non-defeq.20aliased.20instance) -/
theorem rootMultiplicity_eq_nat_find_of_nonzero [DecidableEq R] {p : R[X]} (p0 : p ≠ 0) {a : R} :
letI : DecidablePred fun n : ℕ => ¬(X - C a) ^ (n + 1) ∣ p := fun n =>
@Not.decidable _ (decidableDvdMonic p ((monic_X_sub_C a).pow (n + 1)))
rootMultiplicity a p = Nat.find (multiplicity_X_sub_C_finite a p0) := by
dsimp [rootMultiplicity]
cases Subsingleton.elim ‹DecidableEq R› (Classical.decEq R)
rw [dif_neg p0]
theorem rootMultiplicity_eq_multiplicity [DecidableEq R] [@DecidableRel R[X] (· ∣ ·)]
(p : R[X]) (a : R) :
rootMultiplicity a p =
if h0 : p = 0 then 0 else (multiplicity (X - C a) p).get (multiplicity_X_sub_C_finite a h0) :=
by simp [multiplicity, rootMultiplicity, Part.Dom]; congr; funext; congr
#align polynomial.root_multiplicity_eq_multiplicity Polynomial.rootMultiplicity_eq_multiplicity
@[simp]
theorem rootMultiplicity_zero {x : R} : rootMultiplicity x 0 = 0 :=
dif_pos rfl
#align polynomial.root_multiplicity_zero Polynomial.rootMultiplicity_zero
@[simp]
theorem rootMultiplicity_C (r a : R) : rootMultiplicity a (C r) = 0 := by
cases subsingleton_or_nontrivial R
· rw [Subsingleton.elim (C r) 0, rootMultiplicity_zero]
classical
rw [rootMultiplicity_eq_multiplicity]
split_ifs with hr; rfl
have h : natDegree (C r) < natDegree (X - C a) := by simp
simp_rw [multiplicity.multiplicity_eq_zero.mpr ((monic_X_sub_C a).not_dvd_of_natDegree_lt hr h)]
rfl
set_option linter.uppercaseLean3 false in
#align polynomial.root_multiplicity_C Polynomial.rootMultiplicity_C
theorem pow_rootMultiplicity_dvd (p : R[X]) (a : R) : (X - C a) ^ rootMultiplicity a p ∣ p :=
letI := Classical.decEq R
if h : p = 0 then by simp [h]
else by
classical
rw [rootMultiplicity_eq_multiplicity, dif_neg h]; exact multiplicity.pow_multiplicity_dvd _
#align polynomial.pow_root_multiplicity_dvd Polynomial.pow_rootMultiplicity_dvd
theorem pow_mul_divByMonic_rootMultiplicity_eq (p : R[X]) (a : R) :
(X - C a) ^ rootMultiplicity a p * (p /ₘ (X - C a) ^ rootMultiplicity a p) = p := by
have : Monic ((X - C a) ^ rootMultiplicity a p) := (monic_X_sub_C _).pow _
conv_rhs =>
rw [← modByMonic_add_div p this,
(modByMonic_eq_zero_iff_dvd this).2 (pow_rootMultiplicity_dvd _ _)]
simp
#align polynomial.div_by_monic_mul_pow_root_multiplicity_eq Polynomial.pow_mul_divByMonic_rootMultiplicity_eq
theorem exists_eq_pow_rootMultiplicity_mul_and_not_dvd (p : R[X]) (hp : p ≠ 0) (a : R) :
∃ q : R[X], p = (X - C a) ^ p.rootMultiplicity a * q ∧ ¬ (X - C a) ∣ q := by
classical
rw [rootMultiplicity_eq_multiplicity, dif_neg hp]
apply multiplicity.exists_eq_pow_mul_and_not_dvd
end multiplicity
end Ring
section CommRing
variable [CommRing R] {p q : R[X]}
@[simp]
theorem modByMonic_X_sub_C_eq_C_eval (p : R[X]) (a : R) : p %ₘ (X - C a) = C (p.eval a) := by
nontriviality R
have h : (p %ₘ (X - C a)).eval a = p.eval a := by
rw [modByMonic_eq_sub_mul_div _ (monic_X_sub_C a), eval_sub, eval_mul, eval_sub, eval_X,
eval_C, sub_self, zero_mul, sub_zero]
have : degree (p %ₘ (X - C a)) < 1 :=
degree_X_sub_C a ▸ degree_modByMonic_lt p (monic_X_sub_C a)
have : degree (p %ₘ (X - C a)) ≤ 0 := by
revert this
cases degree (p %ₘ (X - C a))
· exact fun _ => bot_le
· exact fun h => WithBot.some_le_some.2 (Nat.le_of_lt_succ (WithBot.some_lt_some.1 h))
rw [eq_C_of_degree_le_zero this, eval_C] at h
rw [eq_C_of_degree_le_zero this, h]
set_option linter.uppercaseLean3 false in
#align polynomial.mod_by_monic_X_sub_C_eq_C_eval Polynomial.modByMonic_X_sub_C_eq_C_eval
theorem mul_divByMonic_eq_iff_isRoot : (X - C a) * (p /ₘ (X - C a)) = p ↔ IsRoot p a :=
⟨fun h => by
rw [← h, IsRoot.def, eval_mul, eval_sub, eval_X, eval_C, sub_self, zero_mul],
fun h : p.eval a = 0 => by
conv_rhs =>
rw [← modByMonic_add_div p (monic_X_sub_C a)]
rw [modByMonic_X_sub_C_eq_C_eval, h, C_0, zero_add]⟩
#align polynomial.mul_div_by_monic_eq_iff_is_root Polynomial.mul_divByMonic_eq_iff_isRoot
theorem dvd_iff_isRoot : X - C a ∣ p ↔ IsRoot p a :=
⟨fun h => by
rwa [← modByMonic_eq_zero_iff_dvd (monic_X_sub_C _), modByMonic_X_sub_C_eq_C_eval, ← C_0,
C_inj] at h,
fun h => ⟨p /ₘ (X - C a), by rw [mul_divByMonic_eq_iff_isRoot.2 h]⟩⟩
#align polynomial.dvd_iff_is_root Polynomial.dvd_iff_isRoot
theorem X_sub_C_dvd_sub_C_eval : X - C a ∣ p - C (p.eval a) := by
rw [dvd_iff_isRoot, IsRoot, eval_sub, eval_C, sub_self]
set_option linter.uppercaseLean3 false in
#align polynomial.X_sub_C_dvd_sub_C_eval Polynomial.X_sub_C_dvd_sub_C_eval
theorem mem_span_C_X_sub_C_X_sub_C_iff_eval_eval_eq_zero {b : R[X]} {P : R[X][X]} :
P ∈ Ideal.span {C (X - C a), X - C b} ↔ (P.eval b).eval a = 0 := by
rw [Ideal.mem_span_pair]
constructor <;> intro h
· rcases h with ⟨_, _, rfl⟩
simp only [eval_C, eval_X, eval_add, eval_sub, eval_mul, add_zero, mul_zero, sub_self]
· rcases dvd_iff_isRoot.mpr h with ⟨p, hp⟩
rcases @X_sub_C_dvd_sub_C_eval _ b _ P with ⟨q, hq⟩
exact ⟨C p, q, by rw [mul_comm, mul_comm q, eq_add_of_sub_eq' hq, hp, C_mul]⟩
set_option linter.uppercaseLean3 false in
#align polynomial.mem_span_C_X_sub_C_X_sub_C_iff_eval_eval_eq_zero Polynomial.mem_span_C_X_sub_C_X_sub_C_iff_eval_eval_eq_zero
-- TODO: generalize this to Ring. In general, 0 can be replaced by any element in the center of R.
theorem modByMonic_X (p : R[X]) : p %ₘ X = C (p.eval 0) := by
rw [← modByMonic_X_sub_C_eq_C_eval, C_0, sub_zero]
set_option linter.uppercaseLean3 false in
#align polynomial.mod_by_monic_X Polynomial.modByMonic_X
theorem eval₂_modByMonic_eq_self_of_root [CommRing S] {f : R →+* S} {p q : R[X]} (hq : q.Monic)
{x : S} (hx : q.eval₂ f x = 0) : (p %ₘ q).eval₂ f x = p.eval₂ f x := by
rw [modByMonic_eq_sub_mul_div p hq, eval₂_sub, eval₂_mul, hx, zero_mul, sub_zero]
#align polynomial.eval₂_mod_by_monic_eq_self_of_root Polynomial.eval₂_modByMonic_eq_self_of_root
theorem sub_dvd_eval_sub (a b : R) (p : R[X]) : a - b ∣ p.eval a - p.eval b := by
suffices X - C b ∣ p - C (p.eval b) by
simpa only [coe_evalRingHom, eval_sub, eval_X, eval_C] using (evalRingHom a).map_dvd this
simp [dvd_iff_isRoot]
#align polynomial.sub_dvd_eval_sub Polynomial.sub_dvd_eval_sub
theorem ker_evalRingHom (x : R) : RingHom.ker (evalRingHom x) = Ideal.span {X - C x} := by
ext y
simp [Ideal.mem_span_singleton, dvd_iff_isRoot, RingHom.mem_ker]
#align polynomial.ker_eval_ring_hom Polynomial.ker_evalRingHom
@[simp]
theorem rootMultiplicity_eq_zero_iff {p : R[X]} {x : R} :
rootMultiplicity x p = 0 ↔ IsRoot p x → p = 0 := by
classical
simp only [rootMultiplicity_eq_multiplicity, dite_eq_left_iff, PartENat.get_eq_iff_eq_coe,
Nat.cast_zero, multiplicity.multiplicity_eq_zero, dvd_iff_isRoot, not_imp_not]
#align polynomial.root_multiplicity_eq_zero_iff Polynomial.rootMultiplicity_eq_zero_iff
theorem rootMultiplicity_eq_zero {p : R[X]} {x : R} (h : ¬IsRoot p x) : rootMultiplicity x p = 0 :=
rootMultiplicity_eq_zero_iff.2 fun h' => (h h').elim
#align polynomial.root_multiplicity_eq_zero Polynomial.rootMultiplicity_eq_zero
@[simp]
theorem rootMultiplicity_pos' {p : R[X]} {x : R} : 0 < rootMultiplicity x p ↔ p ≠ 0 ∧ IsRoot p x :=
by rw [pos_iff_ne_zero, Ne, rootMultiplicity_eq_zero_iff, not_imp, and_comm]
#align polynomial.root_multiplicity_pos' Polynomial.rootMultiplicity_pos'
theorem rootMultiplicity_pos {p : R[X]} (hp : p ≠ 0) {x : R} :
0 < rootMultiplicity x p ↔ IsRoot p x :=
rootMultiplicity_pos'.trans (and_iff_right hp)
#align polynomial.root_multiplicity_pos Polynomial.rootMultiplicity_pos
theorem eval_divByMonic_pow_rootMultiplicity_ne_zero {p : R[X]} (a : R) (hp : p ≠ 0) :
eval a (p /ₘ (X - C a) ^ rootMultiplicity a p) ≠ 0 := by
classical
haveI : Nontrivial R := Nontrivial.of_polynomial_ne hp
rw [Ne, ← IsRoot, ← dvd_iff_isRoot]
rintro ⟨q, hq⟩
have := pow_mul_divByMonic_rootMultiplicity_eq p a
rw [hq, ← mul_assoc, ← pow_succ, rootMultiplicity_eq_multiplicity, dif_neg hp] at this
exact
multiplicity.is_greatest'
(multiplicity_finite_of_degree_pos_of_monic
(show (0 : WithBot ℕ) < degree (X - C a) by rw [degree_X_sub_C]; decide)
(monic_X_sub_C _) hp)
(Nat.lt_succ_self _) (dvd_of_mul_right_eq _ this)
#align polynomial.eval_div_by_monic_pow_root_multiplicity_ne_zero Polynomial.eval_divByMonic_pow_rootMultiplicity_ne_zero
/-- See `Polynomial.mul_right_modByMonic` for the other multiplication order. This version, unlike
that one, requires commutativity. -/
@[simp]
lemma mul_self_modByMonic (hq : q.Monic) : (p * q) %ₘ q = 0 := by
rw [modByMonic_eq_zero_iff_dvd hq]
exact dvd_mul_left q p
end CommRing
end Polynomial