-
Notifications
You must be signed in to change notification settings - Fork 381
/
Copy pathBasic.lean
1514 lines (1271 loc) · 73.1 KB
/
Basic.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/-
Copyright (c) 2020 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel, Sophie Morel, Yury Kudryashov
-/
import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace
import Mathlib.Topology.Algebra.Module.Multilinear.Topology
#align_import analysis.normed_space.multilinear from "leanprover-community/mathlib"@"f40476639bac089693a489c9e354ebd75dc0f886"
/-!
# Operator norm on the space of continuous multilinear maps
When `f` is a continuous multilinear map in finitely many variables, we define its norm `‖f‖` as the
smallest number such that `‖f m‖ ≤ ‖f‖ * ∏ i, ‖m i‖` for all `m`.
We show that it is indeed a norm, and prove its basic properties.
## Main results
Let `f` be a multilinear map in finitely many variables.
* `exists_bound_of_continuous` asserts that, if `f` is continuous, then there exists `C > 0`
with `‖f m‖ ≤ C * ∏ i, ‖m i‖` for all `m`.
* `continuous_of_bound`, conversely, asserts that this bound implies continuity.
* `mkContinuous` constructs the associated continuous multilinear map.
Let `f` be a continuous multilinear map in finitely many variables.
* `‖f‖` is its norm, i.e., the smallest number such that `‖f m‖ ≤ ‖f‖ * ∏ i, ‖m i‖` for
all `m`.
* `le_opNorm f m` asserts the fundamental inequality `‖f m‖ ≤ ‖f‖ * ∏ i, ‖m i‖`.
* `norm_image_sub_le f m₁ m₂` gives a control of the difference `f m₁ - f m₂` in terms of
`‖f‖` and `‖m₁ - m₂‖`.
## Implementation notes
We mostly follow the API (and the proofs) of `OperatorNorm.lean`, with the additional complexity
that we should deal with multilinear maps in several variables. The currying/uncurrying
constructions are based on those in `Multilinear.lean`.
From the mathematical point of view, all the results follow from the results on operator norm in
one variable, by applying them to one variable after the other through currying. However, this
is only well defined when there is an order on the variables (for instance on `Fin n`) although
the final result is independent of the order. While everything could be done following this
approach, it turns out that direct proofs are easier and more efficient.
-/
suppress_compilation
noncomputable section
open scoped BigOperators NNReal Topology Uniformity
open Finset Metric Function Filter
/-
Porting note: These lines are not required in Mathlib4.
```lean
attribute [local instance 1001]
AddCommGroup.toAddCommMonoid NormedAddCommGroup.toAddCommGroup NormedSpace.toModule'
```
-/
/-!
### Type variables
We use the following type variables in this file:
* `𝕜` : a `NontriviallyNormedField`;
* `ι`, `ι'` : finite index types with decidable equality;
* `E`, `E₁` : families of normed vector spaces over `𝕜` indexed by `i : ι`;
* `E'` : a family of normed vector spaces over `𝕜` indexed by `i' : ι'`;
* `Ei` : a family of normed vector spaces over `𝕜` indexed by `i : Fin (Nat.succ n)`;
* `G`, `G'` : normed vector spaces over `𝕜`.
-/
universe u v v' wE wE₁ wE' wEi wG wG'
section Seminorm
variable {𝕜 : Type u} {ι : Type v} {ι' : Type v'} {n : ℕ} {E : ι → Type wE} {E₁ : ι → Type wE₁}
{E' : ι' → Type wE'} {Ei : Fin n.succ → Type wEi} {G : Type wG} {G' : Type wG'} [Fintype ι]
[Fintype ι'] [NontriviallyNormedField 𝕜] [∀ i, SeminormedAddCommGroup (E i)]
[∀ i, NormedSpace 𝕜 (E i)] [∀ i, SeminormedAddCommGroup (E₁ i)] [∀ i, NormedSpace 𝕜 (E₁ i)]
[∀ i, SeminormedAddCommGroup (E' i)] [∀ i, NormedSpace 𝕜 (E' i)]
[∀ i, SeminormedAddCommGroup (Ei i)] [∀ i, NormedSpace 𝕜 (Ei i)]
[SeminormedAddCommGroup G] [NormedSpace 𝕜 G] [SeminormedAddCommGroup G'] [NormedSpace 𝕜 G']
/-!
### Continuity properties of multilinear maps
We relate continuity of multilinear maps to the inequality `‖f m‖ ≤ C * ∏ i, ‖m i‖`, in
both directions. Along the way, we prove useful bounds on the difference `‖f m₁ - f m₂‖`.
-/
namespace MultilinearMap
variable (f : MultilinearMap 𝕜 E G)
/-- If `f` is a continuous multilinear map in finitely many variables on `E` and `m` is an element
of `∀ i, E i` such that one of the `m i` has norm `0`, then `f m` has norm `0`.
Note that we cannot drop the continuity assumption because `f (m : Unit → E) = f (m ())`,
where the domain has zero norm and the codomain has a nonzero norm
does not satisfy this condition. -/
lemma norm_map_coord_zero (hf : Continuous f) {m : ∀ i, E i} {i : ι} (hi : ‖m i‖ = 0) :
‖f m‖ = 0 := by
classical
rw [← inseparable_zero_iff_norm] at hi ⊢
have : Inseparable (update m i 0) m := inseparable_pi.2 <|
(forall_update_iff m fun i a ↦ Inseparable a (m i)).2 ⟨hi.symm, fun _ _ ↦ rfl⟩
simpa only [map_update_zero] using this.symm.map hf
theorem bound_of_shell_of_norm_map_coord_zero (hf₀ : ∀ {m i}, ‖m i‖ = 0 → ‖f m‖ = 0)
{ε : ι → ℝ} {C : ℝ} (hε : ∀ i, 0 < ε i) {c : ι → 𝕜} (hc : ∀ i, 1 < ‖c i‖)
(hf : ∀ m : ∀ i, E i, (∀ i, ε i / ‖c i‖ ≤ ‖m i‖) → (∀ i, ‖m i‖ < ε i) → ‖f m‖ ≤ C * ∏ i, ‖m i‖)
(m : ∀ i, E i) : ‖f m‖ ≤ C * ∏ i, ‖m i‖ := by
rcases em (∃ i, ‖m i‖ = 0) with (⟨i, hi⟩ | hm)
· rw [hf₀ hi, prod_eq_zero (mem_univ i) hi, mul_zero]
push_neg at hm
choose δ hδ0 hδm_lt hle_δm _ using fun i => rescale_to_shell_semi_normed (hc i) (hε i) (hm i)
have hδ0 : 0 < ∏ i, ‖δ i‖ := prod_pos fun i _ => norm_pos_iff.2 (hδ0 i)
simpa [map_smul_univ, norm_smul, prod_mul_distrib, mul_left_comm C, mul_le_mul_left hδ0] using
hf (fun i => δ i • m i) hle_δm hδm_lt
/-- If a continuous multilinear map in finitely many variables on normed spaces satisfies
the inequality `‖f m‖ ≤ C * ∏ i, ‖m i‖` on a shell `ε i / ‖c i‖ < ‖m i‖ < ε i` for some positive
numbers `ε i` and elements `c i : 𝕜`, `1 < ‖c i‖`, then it satisfies this inequality for all `m`. -/
theorem bound_of_shell_of_continuous (hfc : Continuous f)
{ε : ι → ℝ} {C : ℝ} (hε : ∀ i, 0 < ε i) {c : ι → 𝕜} (hc : ∀ i, 1 < ‖c i‖)
(hf : ∀ m : ∀ i, E i, (∀ i, ε i / ‖c i‖ ≤ ‖m i‖) → (∀ i, ‖m i‖ < ε i) → ‖f m‖ ≤ C * ∏ i, ‖m i‖)
(m : ∀ i, E i) : ‖f m‖ ≤ C * ∏ i, ‖m i‖ :=
bound_of_shell_of_norm_map_coord_zero f (norm_map_coord_zero f hfc) hε hc hf m
/-- If a multilinear map in finitely many variables on normed spaces is continuous, then it
satisfies the inequality `‖f m‖ ≤ C * ∏ i, ‖m i‖`, for some `C` which can be chosen to be
positive. -/
theorem exists_bound_of_continuous (hf : Continuous f) :
∃ C : ℝ, 0 < C ∧ ∀ m, ‖f m‖ ≤ C * ∏ i, ‖m i‖ := by
cases isEmpty_or_nonempty ι
· refine' ⟨‖f 0‖ + 1, add_pos_of_nonneg_of_pos (norm_nonneg _) zero_lt_one, fun m => _⟩
obtain rfl : m = 0
exact funext (IsEmpty.elim ‹_›)
simp [univ_eq_empty, zero_le_one]
obtain ⟨ε : ℝ, ε0 : 0 < ε, hε : ∀ m : ∀ i, E i, ‖m - 0‖ < ε → ‖f m - f 0‖ < 1⟩ :=
NormedAddCommGroup.tendsto_nhds_nhds.1 (hf.tendsto 0) 1 zero_lt_one
simp only [sub_zero, f.map_zero] at hε
rcases NormedField.exists_one_lt_norm 𝕜 with ⟨c, hc⟩
have : 0 < (‖c‖ / ε) ^ Fintype.card ι := pow_pos (div_pos (zero_lt_one.trans hc) ε0) _
refine' ⟨_, this, _⟩
refine' f.bound_of_shell_of_continuous hf (fun _ => ε0) (fun _ => hc) fun m hcm hm => _
refine' (hε m ((pi_norm_lt_iff ε0).2 hm)).le.trans _
rw [← div_le_iff' this, one_div, ← inv_pow, inv_div, Fintype.card, ← prod_const]
exact prod_le_prod (fun _ _ => div_nonneg ε0.le (norm_nonneg _)) fun i _ => hcm i
#align multilinear_map.exists_bound_of_continuous MultilinearMap.exists_bound_of_continuous
/-- If `f` satisfies a boundedness property around `0`, one can deduce a bound on `f m₁ - f m₂`
using the multilinearity. Here, we give a precise but hard to use version. See
`norm_image_sub_le_of_bound` for a less precise but more usable version. The bound reads
`‖f m - f m'‖ ≤
C * ‖m 1 - m' 1‖ * max ‖m 2‖ ‖m' 2‖ * max ‖m 3‖ ‖m' 3‖ * ... * max ‖m n‖ ‖m' n‖ + ...`,
where the other terms in the sum are the same products where `1` is replaced by any `i`. -/
theorem norm_image_sub_le_of_bound' [DecidableEq ι] {C : ℝ} (hC : 0 ≤ C)
(H : ∀ m, ‖f m‖ ≤ C * ∏ i, ‖m i‖) (m₁ m₂ : ∀ i, E i) :
‖f m₁ - f m₂‖ ≤ C * ∑ i, ∏ j, if j = i then ‖m₁ i - m₂ i‖ else max ‖m₁ j‖ ‖m₂ j‖ := by
have A :
∀ s : Finset ι,
‖f m₁ - f (s.piecewise m₂ m₁)‖ ≤
C * ∑ i in s, ∏ j, if j = i then ‖m₁ i - m₂ i‖ else max ‖m₁ j‖ ‖m₂ j‖ := by
intro s
induction' s using Finset.induction with i s his Hrec
· simp
have I :
‖f (s.piecewise m₂ m₁) - f ((insert i s).piecewise m₂ m₁)‖ ≤
C * ∏ j, if j = i then ‖m₁ i - m₂ i‖ else max ‖m₁ j‖ ‖m₂ j‖ := by
have A : (insert i s).piecewise m₂ m₁ = Function.update (s.piecewise m₂ m₁) i (m₂ i) :=
s.piecewise_insert _ _ _
have B : s.piecewise m₂ m₁ = Function.update (s.piecewise m₂ m₁) i (m₁ i) := by
simp [eq_update_iff, his]
rw [B, A, ← f.map_sub]
apply le_trans (H _)
gcongr with j
· exact fun j _ => norm_nonneg _
by_cases h : j = i
· rw [h]
simp
· by_cases h' : j ∈ s <;> simp [h', h, le_refl]
calc
‖f m₁ - f ((insert i s).piecewise m₂ m₁)‖ ≤
‖f m₁ - f (s.piecewise m₂ m₁)‖ +
‖f (s.piecewise m₂ m₁) - f ((insert i s).piecewise m₂ m₁)‖ := by
rw [← dist_eq_norm, ← dist_eq_norm, ← dist_eq_norm]
exact dist_triangle _ _ _
_ ≤ (C * ∑ i in s, ∏ j, if j = i then ‖m₁ i - m₂ i‖ else max ‖m₁ j‖ ‖m₂ j‖) +
C * ∏ j, if j = i then ‖m₁ i - m₂ i‖ else max ‖m₁ j‖ ‖m₂ j‖ :=
(add_le_add Hrec I)
_ = C * ∑ i in insert i s, ∏ j, if j = i then ‖m₁ i - m₂ i‖ else max ‖m₁ j‖ ‖m₂ j‖ := by
simp [his, add_comm, left_distrib]
convert A univ
simp
#align multilinear_map.norm_image_sub_le_of_bound' MultilinearMap.norm_image_sub_le_of_bound'
/-- If `f` satisfies a boundedness property around `0`, one can deduce a bound on `f m₁ - f m₂`
using the multilinearity. Here, we give a usable but not very precise version. See
`norm_image_sub_le_of_bound'` for a more precise but less usable version. The bound is
`‖f m - f m'‖ ≤ C * card ι * ‖m - m'‖ * (max ‖m‖ ‖m'‖) ^ (card ι - 1)`. -/
theorem norm_image_sub_le_of_bound {C : ℝ} (hC : 0 ≤ C) (H : ∀ m, ‖f m‖ ≤ C * ∏ i, ‖m i‖)
(m₁ m₂ : ∀ i, E i) :
‖f m₁ - f m₂‖ ≤ C * Fintype.card ι * max ‖m₁‖ ‖m₂‖ ^ (Fintype.card ι - 1) * ‖m₁ - m₂‖ := by
classical
have A :
∀ i : ι,
∏ j, (if j = i then ‖m₁ i - m₂ i‖ else max ‖m₁ j‖ ‖m₂ j‖) ≤
‖m₁ - m₂‖ * max ‖m₁‖ ‖m₂‖ ^ (Fintype.card ι - 1) := by
intro i
calc
∏ j, (if j = i then ‖m₁ i - m₂ i‖ else max ‖m₁ j‖ ‖m₂ j‖) ≤
∏ j : ι, Function.update (fun _ => max ‖m₁‖ ‖m₂‖) i ‖m₁ - m₂‖ j := by
apply Finset.prod_le_prod
· intro j _
by_cases h : j = i <;> simp [h, norm_nonneg]
· intro j _
by_cases h : j = i
· rw [h]
simp only [ite_true, Function.update_same]
exact norm_le_pi_norm (m₁ - m₂) i
· simp [h, -le_max_iff, -max_le_iff, max_le_max, norm_le_pi_norm (_ : ∀ i, E i)]
_ = ‖m₁ - m₂‖ * max ‖m₁‖ ‖m₂‖ ^ (Fintype.card ι - 1) := by
rw [prod_update_of_mem (Finset.mem_univ _)]
simp [card_univ_diff]
calc
‖f m₁ - f m₂‖ ≤ C * ∑ i, ∏ j, if j = i then ‖m₁ i - m₂ i‖ else max ‖m₁ j‖ ‖m₂ j‖ :=
f.norm_image_sub_le_of_bound' hC H m₁ m₂
_ ≤ C * ∑ _i, ‖m₁ - m₂‖ * max ‖m₁‖ ‖m₂‖ ^ (Fintype.card ι - 1) := by gcongr; apply A
_ = C * Fintype.card ι * max ‖m₁‖ ‖m₂‖ ^ (Fintype.card ι - 1) * ‖m₁ - m₂‖ := by
rw [sum_const, card_univ, nsmul_eq_mul]
ring
#align multilinear_map.norm_image_sub_le_of_bound MultilinearMap.norm_image_sub_le_of_bound
/-- If a multilinear map satisfies an inequality `‖f m‖ ≤ C * ∏ i, ‖m i‖`, then it is
continuous. -/
theorem continuous_of_bound (C : ℝ) (H : ∀ m, ‖f m‖ ≤ C * ∏ i, ‖m i‖) : Continuous f := by
let D := max C 1
have D_pos : 0 ≤ D := le_trans zero_le_one (le_max_right _ _)
replace H : ∀ m, ‖f m‖ ≤ D * ∏ i, ‖m i‖ := by
intro m
apply le_trans (H m) (mul_le_mul_of_nonneg_right (le_max_left _ _) _)
exact prod_nonneg fun (i : ι) _ => norm_nonneg (m i)
refine' continuous_iff_continuousAt.2 fun m => _
refine'
continuousAt_of_locally_lipschitz zero_lt_one
(D * Fintype.card ι * (‖m‖ + 1) ^ (Fintype.card ι - 1)) fun m' h' => _
rw [dist_eq_norm, dist_eq_norm]
have : max ‖m'‖ ‖m‖ ≤ ‖m‖ + 1 := by
simp [zero_le_one, norm_le_of_mem_closedBall (le_of_lt h')]
calc
‖f m' - f m‖ ≤ D * Fintype.card ι * max ‖m'‖ ‖m‖ ^ (Fintype.card ι - 1) * ‖m' - m‖ :=
f.norm_image_sub_le_of_bound D_pos H m' m
_ ≤ D * Fintype.card ι * (‖m‖ + 1) ^ (Fintype.card ι - 1) * ‖m' - m‖ := by gcongr
#align multilinear_map.continuous_of_bound MultilinearMap.continuous_of_bound
/-- Constructing a continuous multilinear map from a multilinear map satisfying a boundedness
condition. -/
def mkContinuous (C : ℝ) (H : ∀ m, ‖f m‖ ≤ C * ∏ i, ‖m i‖) : ContinuousMultilinearMap 𝕜 E G :=
{ f with cont := f.continuous_of_bound C H }
#align multilinear_map.mk_continuous MultilinearMap.mkContinuous
@[simp]
theorem coe_mkContinuous (C : ℝ) (H : ∀ m, ‖f m‖ ≤ C * ∏ i, ‖m i‖) : ⇑(f.mkContinuous C H) = f :=
rfl
#align multilinear_map.coe_mk_continuous MultilinearMap.coe_mkContinuous
/-- Given a multilinear map in `n` variables, if one restricts it to `k` variables putting `z` on
the other coordinates, then the resulting restricted function satisfies an inequality
`‖f.restr v‖ ≤ C * ‖z‖^(n-k) * Π ‖v i‖` if the original function satisfies `‖f v‖ ≤ C * Π ‖v i‖`. -/
theorem restr_norm_le {k n : ℕ} (f : (MultilinearMap 𝕜 (fun _ : Fin n => G) G' : _))
(s : Finset (Fin n)) (hk : s.card = k) (z : G) {C : ℝ} (H : ∀ m, ‖f m‖ ≤ C * ∏ i, ‖m i‖)
(v : Fin k → G) : ‖f.restr s hk z v‖ ≤ C * ‖z‖ ^ (n - k) * ∏ i, ‖v i‖ := by
rw [mul_right_comm, mul_assoc]
convert H _ using 2
simp only [apply_dite norm, Fintype.prod_dite, prod_const ‖z‖, Finset.card_univ,
Fintype.card_of_subtype sᶜ fun _ => mem_compl, card_compl, Fintype.card_fin, hk, mk_coe, ←
(s.orderIsoOfFin hk).symm.bijective.prod_comp fun x => ‖v x‖]
convert rfl
#align multilinear_map.restr_norm_le MultilinearMap.restr_norm_le
end MultilinearMap
/-!
### Continuous multilinear maps
We define the norm `‖f‖` of a continuous multilinear map `f` in finitely many variables as the
smallest number such that `‖f m‖ ≤ ‖f‖ * ∏ i, ‖m i‖` for all `m`. We show that this
defines a normed space structure on `ContinuousMultilinearMap 𝕜 E G`.
-/
namespace ContinuousMultilinearMap
variable (c : 𝕜) (f g : ContinuousMultilinearMap 𝕜 E G) (m : ∀ i, E i)
theorem bound : ∃ C : ℝ, 0 < C ∧ ∀ m, ‖f m‖ ≤ C * ∏ i, ‖m i‖ :=
f.toMultilinearMap.exists_bound_of_continuous f.2
#align continuous_multilinear_map.bound ContinuousMultilinearMap.bound
open Real
/-- The operator norm of a continuous multilinear map is the inf of all its bounds. -/
def opNorm :=
sInf { c | 0 ≤ (c : ℝ) ∧ ∀ m, ‖f m‖ ≤ c * ∏ i, ‖m i‖ }
#align continuous_multilinear_map.op_norm ContinuousMultilinearMap.opNorm
instance hasOpNorm : Norm (ContinuousMultilinearMap 𝕜 E G) :=
⟨opNorm⟩
#align continuous_multilinear_map.has_op_norm ContinuousMultilinearMap.hasOpNorm
/-- An alias of `ContinuousMultilinearMap.hasOpNorm` with non-dependent types to help typeclass
search. -/
instance hasOpNorm' : Norm (ContinuousMultilinearMap 𝕜 (fun _ : ι => G) G') :=
ContinuousMultilinearMap.hasOpNorm
#align continuous_multilinear_map.has_op_norm' ContinuousMultilinearMap.hasOpNorm'
theorem norm_def : ‖f‖ = sInf { c | 0 ≤ (c : ℝ) ∧ ∀ m, ‖f m‖ ≤ c * ∏ i, ‖m i‖ } :=
rfl
#align continuous_multilinear_map.norm_def ContinuousMultilinearMap.norm_def
-- So that invocations of `le_csInf` make sense: we show that the set of
-- bounds is nonempty and bounded below.
theorem bounds_nonempty {f : ContinuousMultilinearMap 𝕜 E G} :
∃ c, c ∈ { c | 0 ≤ c ∧ ∀ m, ‖f m‖ ≤ c * ∏ i, ‖m i‖ } :=
let ⟨M, hMp, hMb⟩ := f.bound
⟨M, le_of_lt hMp, hMb⟩
#align continuous_multilinear_map.bounds_nonempty ContinuousMultilinearMap.bounds_nonempty
theorem bounds_bddBelow {f : ContinuousMultilinearMap 𝕜 E G} :
BddBelow { c | 0 ≤ c ∧ ∀ m, ‖f m‖ ≤ c * ∏ i, ‖m i‖ } :=
⟨0, fun _ ⟨hn, _⟩ => hn⟩
#align continuous_multilinear_map.bounds_bdd_below ContinuousMultilinearMap.bounds_bddBelow
theorem isLeast_opNorm : IsLeast {c : ℝ | 0 ≤ c ∧ ∀ m, ‖f m‖ ≤ c * ∏ i, ‖m i‖} ‖f‖ := by
refine IsClosed.isLeast_csInf ?_ bounds_nonempty bounds_bddBelow
simp only [Set.setOf_and, Set.setOf_forall]
exact isClosed_Ici.inter (isClosed_iInter fun m ↦
isClosed_le continuous_const (continuous_id.mul continuous_const))
@[deprecated]
alias isLeast_op_norm :=
isLeast_opNorm -- deprecated on 2024-02-02
theorem opNorm_nonneg : 0 ≤ ‖f‖ :=
Real.sInf_nonneg _ fun _ ⟨hx, _⟩ => hx
#align continuous_multilinear_map.op_norm_nonneg ContinuousMultilinearMap.opNorm_nonneg
@[deprecated]
alias op_norm_nonneg :=
opNorm_nonneg -- deprecated on 2024-02-02
/-- The fundamental property of the operator norm of a continuous multilinear map:
`‖f m‖` is bounded by `‖f‖` times the product of the `‖m i‖`. -/
theorem le_opNorm : ‖f m‖ ≤ ‖f‖ * ∏ i, ‖m i‖ := f.isLeast_opNorm.1.2 m
#align continuous_multilinear_map.le_op_norm ContinuousMultilinearMap.le_opNorm
@[deprecated]
alias le_op_norm :=
le_opNorm -- deprecated on 2024-02-02
variable {f m}
theorem le_mul_prod_of_le_opNorm_of_le {C : ℝ} {b : ι → ℝ} (hC : ‖f‖ ≤ C) (hm : ∀ i, ‖m i‖ ≤ b i) :
‖f m‖ ≤ C * ∏ i, b i :=
(f.le_opNorm m).trans <| mul_le_mul hC (prod_le_prod (fun _ _ ↦ norm_nonneg _) fun _ _ ↦ hm _)
(prod_nonneg fun _ _ ↦ norm_nonneg _) ((opNorm_nonneg _).trans hC)
@[deprecated]
alias le_mul_prod_of_le_op_norm_of_le :=
le_mul_prod_of_le_opNorm_of_le -- deprecated on 2024-02-02
variable (f)
theorem le_opNorm_mul_prod_of_le {b : ι → ℝ} (hm : ∀ i, ‖m i‖ ≤ b i) : ‖f m‖ ≤ ‖f‖ * ∏ i, b i :=
le_mul_prod_of_le_opNorm_of_le le_rfl hm
#align continuous_multilinear_map.le_op_norm_mul_prod_of_le ContinuousMultilinearMap.le_opNorm_mul_prod_of_le
@[deprecated]
alias le_op_norm_mul_prod_of_le :=
le_opNorm_mul_prod_of_le -- deprecated on 2024-02-02
theorem le_opNorm_mul_pow_card_of_le {b : ℝ} (hm : ‖m‖ ≤ b) :
‖f m‖ ≤ ‖f‖ * b ^ Fintype.card ι := by
simpa only [prod_const] using f.le_opNorm_mul_prod_of_le fun i => (norm_le_pi_norm m i).trans hm
#align continuous_multilinear_map.le_op_norm_mul_pow_card_of_le ContinuousMultilinearMap.le_opNorm_mul_pow_card_of_le
@[deprecated]
alias le_op_norm_mul_pow_card_of_le :=
le_opNorm_mul_pow_card_of_le -- deprecated on 2024-02-02
theorem le_opNorm_mul_pow_of_le {Ei : Fin n → Type*} [∀ i, NormedAddCommGroup (Ei i)]
[∀ i, NormedSpace 𝕜 (Ei i)] (f : ContinuousMultilinearMap 𝕜 Ei G) {m : ∀ i, Ei i} {b : ℝ}
(hm : ‖m‖ ≤ b) : ‖f m‖ ≤ ‖f‖ * b ^ n := by
simpa only [Fintype.card_fin] using f.le_opNorm_mul_pow_card_of_le hm
#align continuous_multilinear_map.le_op_norm_mul_pow_of_le ContinuousMultilinearMap.le_opNorm_mul_pow_of_le
@[deprecated]
alias le_op_norm_mul_pow_of_le :=
le_opNorm_mul_pow_of_le -- deprecated on 2024-02-02
variable {f} (m)
theorem le_of_opNorm_le {C : ℝ} (h : ‖f‖ ≤ C) : ‖f m‖ ≤ C * ∏ i, ‖m i‖ :=
le_mul_prod_of_le_opNorm_of_le h fun _ ↦ le_rfl
#align continuous_multilinear_map.le_of_op_norm_le ContinuousMultilinearMap.le_of_opNorm_le
@[deprecated]
alias le_of_op_norm_le :=
le_of_opNorm_le -- deprecated on 2024-02-02
variable (f)
theorem ratio_le_opNorm : (‖f m‖ / ∏ i, ‖m i‖) ≤ ‖f‖ :=
div_le_of_nonneg_of_le_mul (prod_nonneg fun _ _ => norm_nonneg _) (opNorm_nonneg _)
(f.le_opNorm m)
#align continuous_multilinear_map.ratio_le_op_norm ContinuousMultilinearMap.ratio_le_opNorm
@[deprecated]
alias ratio_le_op_norm :=
ratio_le_opNorm -- deprecated on 2024-02-02
/-- The image of the unit ball under a continuous multilinear map is bounded. -/
theorem unit_le_opNorm (h : ‖m‖ ≤ 1) : ‖f m‖ ≤ ‖f‖ :=
(le_opNorm_mul_pow_card_of_le f h).trans <| by simp
#align continuous_multilinear_map.unit_le_op_norm ContinuousMultilinearMap.unit_le_opNorm
@[deprecated]
alias unit_le_op_norm :=
unit_le_opNorm -- deprecated on 2024-02-02
/-- If one controls the norm of every `f x`, then one controls the norm of `f`. -/
theorem opNorm_le_bound {M : ℝ} (hMp : 0 ≤ M) (hM : ∀ m, ‖f m‖ ≤ M * ∏ i, ‖m i‖) : ‖f‖ ≤ M :=
csInf_le bounds_bddBelow ⟨hMp, hM⟩
#align continuous_multilinear_map.op_norm_le_bound ContinuousMultilinearMap.opNorm_le_bound
@[deprecated]
alias op_norm_le_bound :=
opNorm_le_bound -- deprecated on 2024-02-02
theorem opNorm_le_iff {C : ℝ} (hC : 0 ≤ C) : ‖f‖ ≤ C ↔ ∀ m, ‖f m‖ ≤ C * ∏ i, ‖m i‖ :=
⟨fun h _ ↦ le_of_opNorm_le _ h, opNorm_le_bound _ hC⟩
@[deprecated]
alias op_norm_le_iff :=
opNorm_le_iff -- deprecated on 2024-02-02
/-- The operator norm satisfies the triangle inequality. -/
theorem opNorm_add_le : ‖f + g‖ ≤ ‖f‖ + ‖g‖ :=
opNorm_le_bound _ (add_nonneg (opNorm_nonneg _) (opNorm_nonneg _)) fun x => by
rw [add_mul]
exact norm_add_le_of_le (le_opNorm _ _) (le_opNorm _ _)
#align continuous_multilinear_map.op_norm_add_le ContinuousMultilinearMap.opNorm_add_le
@[deprecated]
alias op_norm_add_le :=
opNorm_add_le -- deprecated on 2024-02-02
theorem opNorm_zero : ‖(0 : ContinuousMultilinearMap 𝕜 E G)‖ = 0 :=
(opNorm_nonneg _).antisymm' <| opNorm_le_bound 0 le_rfl fun m => by simp
#align continuous_multilinear_map.op_norm_zero ContinuousMultilinearMap.opNorm_zero
@[deprecated]
alias op_norm_zero :=
opNorm_zero -- deprecated on 2024-02-02
section
variable {𝕜' : Type*} [NormedField 𝕜'] [NormedSpace 𝕜' G] [SMulCommClass 𝕜 𝕜' G]
theorem opNorm_smul_le (c : 𝕜') : ‖c • f‖ ≤ ‖c‖ * ‖f‖ :=
(c • f).opNorm_le_bound (mul_nonneg (norm_nonneg _) (opNorm_nonneg _)) fun m ↦ by
rw [smul_apply, norm_smul, mul_assoc]
exact mul_le_mul_of_nonneg_left (le_opNorm _ _) (norm_nonneg _)
#align continuous_multilinear_map.op_norm_smul_le ContinuousMultilinearMap.opNorm_smul_le
@[deprecated]
alias op_norm_smul_le :=
opNorm_smul_le -- deprecated on 2024-02-02
theorem opNorm_neg : ‖-f‖ = ‖f‖ := by
rw [norm_def]
apply congr_arg
ext
simp
#align continuous_multilinear_map.op_norm_neg ContinuousMultilinearMap.opNorm_neg
@[deprecated]
alias op_norm_neg :=
opNorm_neg -- deprecated on 2024-02-02
variable (𝕜 E G) in
/-- Operator seminorm on the space of continuous multilinear maps, as `Seminorm`.
We use this seminorm
to define a `SeminormedAddCommGroup` structure on `ContinuousMultilinearMap 𝕜 E G`,
but we have to override the projection `UniformSpace`
so that it is definitionally equal to the one coming from the topologies on `E` and `G`. -/
protected def seminorm : Seminorm 𝕜 (ContinuousMultilinearMap 𝕜 E G) :=
.ofSMulLE norm opNorm_zero opNorm_add_le fun c f ↦ opNorm_smul_le f c
private lemma uniformity_eq_seminorm :
𝓤 (ContinuousMultilinearMap 𝕜 E G) = ⨅ r > 0, 𝓟 {f | ‖f.1 - f.2‖ < r} := by
refine (ContinuousMultilinearMap.seminorm 𝕜 E G).uniformity_eq_of_hasBasis
(ContinuousMultilinearMap.hasBasis_nhds_zero_of_basis Metric.nhds_basis_closedBall)
?_ fun (s, r) ⟨hs, hr⟩ ↦ ?_
· rcases NormedField.exists_lt_norm 𝕜 1 with ⟨c, hc⟩
have hc₀ : 0 < ‖c‖ := one_pos.trans hc
simp only [hasBasis_nhds_zero.mem_iff, Prod.exists]
use 1, closedBall 0 ‖c‖, closedBall 0 1
suffices ∀ f : ContinuousMultilinearMap 𝕜 E G, (∀ x, ‖x‖ ≤ ‖c‖ → ‖f x‖ ≤ 1) → ‖f‖ ≤ 1 by
simpa [NormedSpace.isVonNBounded_closedBall, closedBall_mem_nhds, Set.subset_def, Set.MapsTo]
intro f hf
refine opNorm_le_bound _ (by positivity) <|
f.1.bound_of_shell_of_continuous f.2 (fun _ ↦ hc₀) (fun _ ↦ hc) fun x hcx hx ↦ ?_
calc
‖f x‖ ≤ 1 := hf _ <| (pi_norm_le_iff_of_nonneg (norm_nonneg c)).2 fun i ↦ (hx i).le
_ = ∏ i : ι, 1 := by simp
_ ≤ ∏ i, ‖x i‖ := Finset.prod_le_prod (fun _ _ ↦ zero_le_one) fun i _ ↦ by
simpa only [div_self hc₀.ne'] using hcx i
_ = 1 * ∏ i, ‖x i‖ := (one_mul _).symm
· rcases (NormedSpace.isVonNBounded_iff' _ _ _).1 hs with ⟨ε, hε⟩
rcases exists_pos_mul_lt hr (ε ^ Fintype.card ι) with ⟨δ, hδ₀, hδ⟩
refine ⟨δ, hδ₀, fun f hf x hx ↦ ?_⟩
simp only [Seminorm.mem_ball_zero, mem_closedBall_zero_iff] at hf ⊢
replace hf : ‖f‖ ≤ δ := hf.le
replace hx : ‖x‖ ≤ ε := hε x hx
calc
‖f x‖ ≤ ‖f‖ * ε ^ Fintype.card ι := le_opNorm_mul_pow_card_of_le f hx
_ ≤ δ * ε ^ Fintype.card ι := by have := (norm_nonneg x).trans hx; gcongr
_ ≤ r := (mul_comm _ _).trans_le hδ.le
instance instPseudoMetricSpace : PseudoMetricSpace (ContinuousMultilinearMap 𝕜 E G) :=
.replaceUniformity
(ContinuousMultilinearMap.seminorm 𝕜 E G).toSeminormedAddCommGroup.toPseudoMetricSpace
uniformity_eq_seminorm
/-- Continuous multilinear maps themselves form a seminormed space with respect to
the operator norm. -/
instance seminormedAddCommGroup :
SeminormedAddCommGroup (ContinuousMultilinearMap 𝕜 E G) := ⟨fun _ _ ↦ rfl⟩
/-- An alias of `ContinuousMultilinearMap.seminormedAddCommGroup` with non-dependent types to help
typeclass search. -/
instance seminormedAddCommGroup' :
SeminormedAddCommGroup (ContinuousMultilinearMap 𝕜 (fun _ : ι => G) G') :=
ContinuousMultilinearMap.seminormedAddCommGroup
instance normedSpace : NormedSpace 𝕜' (ContinuousMultilinearMap 𝕜 E G) :=
⟨fun c f => f.opNorm_smul_le c⟩
#align continuous_multilinear_map.normed_space ContinuousMultilinearMap.normedSpace
/-- An alias of `ContinuousMultilinearMap.normedSpace` with non-dependent types to help typeclass
search. -/
instance normedSpace' : NormedSpace 𝕜' (ContinuousMultilinearMap 𝕜 (fun _ : ι => G') G) :=
ContinuousMultilinearMap.normedSpace
#align continuous_multilinear_map.normed_space' ContinuousMultilinearMap.normedSpace'
/-- The fundamental property of the operator norm of a continuous multilinear map:
`‖f m‖` is bounded by `‖f‖` times the product of the `‖m i‖`, `nnnorm` version. -/
theorem le_opNNNorm : ‖f m‖₊ ≤ ‖f‖₊ * ∏ i, ‖m i‖₊ :=
NNReal.coe_le_coe.1 <| by
push_cast
exact f.le_opNorm m
#align continuous_multilinear_map.le_op_nnnorm ContinuousMultilinearMap.le_opNNNorm
@[deprecated]
alias le_op_nnnorm :=
le_opNNNorm -- deprecated on 2024-02-02
theorem le_of_opNNNorm_le {C : ℝ≥0} (h : ‖f‖₊ ≤ C) : ‖f m‖₊ ≤ C * ∏ i, ‖m i‖₊ :=
(f.le_opNNNorm m).trans <| mul_le_mul' h le_rfl
#align continuous_multilinear_map.le_of_op_nnnorm_le ContinuousMultilinearMap.le_of_opNNNorm_le
@[deprecated]
alias le_of_op_nnnorm_le :=
le_of_opNNNorm_le -- deprecated on 2024-02-02
theorem opNNNorm_le_iff {C : ℝ≥0} : ‖f‖₊ ≤ C ↔ ∀ m, ‖f m‖₊ ≤ C * ∏ i, ‖m i‖₊ := by
simp only [← NNReal.coe_le_coe]; simp [opNorm_le_iff _ C.coe_nonneg, NNReal.coe_prod]
@[deprecated]
alias op_nnnorm_le_iff :=
opNNNorm_le_iff -- deprecated on 2024-02-02
theorem isLeast_opNNNorm : IsLeast {C : ℝ≥0 | ∀ m, ‖f m‖₊ ≤ C * ∏ i, ‖m i‖₊} ‖f‖₊ := by
simpa only [← opNNNorm_le_iff] using isLeast_Ici
@[deprecated]
alias isLeast_op_nnnorm :=
isLeast_opNNNorm -- deprecated on 2024-02-02
theorem opNNNorm_prod (f : ContinuousMultilinearMap 𝕜 E G) (g : ContinuousMultilinearMap 𝕜 E G') :
‖f.prod g‖₊ = max ‖f‖₊ ‖g‖₊ :=
eq_of_forall_ge_iff fun _ ↦ by
simp only [opNNNorm_le_iff, prod_apply, Prod.nnnorm_def', max_le_iff, forall_and]
@[deprecated]
alias op_nnnorm_prod :=
opNNNorm_prod -- deprecated on 2024-02-02
theorem opNorm_prod (f : ContinuousMultilinearMap 𝕜 E G) (g : ContinuousMultilinearMap 𝕜 E G') :
‖f.prod g‖ = max ‖f‖ ‖g‖ :=
congr_arg NNReal.toReal (opNNNorm_prod f g)
#align continuous_multilinear_map.op_norm_prod ContinuousMultilinearMap.opNorm_prod
@[deprecated]
alias op_norm_prod :=
opNorm_prod -- deprecated on 2024-02-02
theorem opNNNorm_pi
[∀ i', SeminormedAddCommGroup (E' i')] [∀ i', NormedSpace 𝕜 (E' i')]
(f : ∀ i', ContinuousMultilinearMap 𝕜 E (E' i')) : ‖pi f‖₊ = ‖f‖₊ :=
eq_of_forall_ge_iff fun _ ↦ by simpa [opNNNorm_le_iff, pi_nnnorm_le_iff] using forall_swap
theorem opNorm_pi {ι' : Type v'} [Fintype ι'] {E' : ι' → Type wE'}
[∀ i', SeminormedAddCommGroup (E' i')] [∀ i', NormedSpace 𝕜 (E' i')]
(f : ∀ i', ContinuousMultilinearMap 𝕜 E (E' i')) :
‖pi f‖ = ‖f‖ :=
congr_arg NNReal.toReal (opNNNorm_pi f)
#align continuous_multilinear_map.norm_pi ContinuousMultilinearMap.opNorm_pi
@[deprecated]
alias op_norm_pi :=
opNorm_pi -- deprecated on 2024-02-02
section
@[simp]
theorem norm_ofSubsingleton [Subsingleton ι] (i : ι) (f : G →L[𝕜] G') :
‖ofSubsingleton 𝕜 G G' i f‖ = ‖f‖ := by
letI : Unique ι := uniqueOfSubsingleton i
simp [norm_def, ContinuousLinearMap.norm_def, (Equiv.funUnique _ _).symm.surjective.forall]
@[simp]
theorem nnnorm_ofSubsingleton [Subsingleton ι] (i : ι) (f : G →L[𝕜] G') :
‖ofSubsingleton 𝕜 G G' i f‖₊ = ‖f‖₊ :=
NNReal.eq <| norm_ofSubsingleton i f
variable (𝕜 G)
/-- Linear isometry between continuous linear maps from `G` to `G'`
and continuous `1`-multilinear maps from `G` to `G'`. -/
@[simps apply symm_apply]
def ofSubsingletonₗᵢ [Subsingleton ι] (i : ι) :
(G →L[𝕜] G') ≃ₗᵢ[𝕜] ContinuousMultilinearMap 𝕜 (fun _ : ι ↦ G) G' :=
{ ofSubsingleton 𝕜 G G' i with
map_add' := fun _ _ ↦ rfl
map_smul' := fun _ _ ↦ rfl
norm_map' := norm_ofSubsingleton i }
theorem norm_ofSubsingleton_id_le [Subsingleton ι] (i : ι) :
‖ofSubsingleton 𝕜 G G i (.id _ _)‖ ≤ 1 := by
rw [norm_ofSubsingleton]
apply ContinuousLinearMap.norm_id_le
#align continuous_multilinear_map.norm_of_subsingleton_le ContinuousMultilinearMap.norm_ofSubsingleton_id_le
theorem nnnorm_ofSubsingleton_id_le [Subsingleton ι] (i : ι) :
‖ofSubsingleton 𝕜 G G i (.id _ _)‖₊ ≤ 1 :=
norm_ofSubsingleton_id_le _ _ _
#align continuous_multilinear_map.nnnorm_of_subsingleton_le ContinuousMultilinearMap.nnnorm_ofSubsingleton_id_le
variable {G} (E)
@[simp]
theorem norm_constOfIsEmpty [IsEmpty ι] (x : G) : ‖constOfIsEmpty 𝕜 E x‖ = ‖x‖ := by
apply le_antisymm
· refine' opNorm_le_bound _ (norm_nonneg _) fun x => _
rw [Fintype.prod_empty, mul_one, constOfIsEmpty_apply]
· simpa using (constOfIsEmpty 𝕜 E x).le_opNorm 0
#align continuous_multilinear_map.norm_const_of_is_empty ContinuousMultilinearMap.norm_constOfIsEmpty
@[simp]
theorem nnnorm_constOfIsEmpty [IsEmpty ι] (x : G) : ‖constOfIsEmpty 𝕜 E x‖₊ = ‖x‖₊ :=
NNReal.eq <| norm_constOfIsEmpty _ _ _
#align continuous_multilinear_map.nnnorm_const_of_is_empty ContinuousMultilinearMap.nnnorm_constOfIsEmpty
end
section
variable (𝕜 E E' G G')
/-- `ContinuousMultilinearMap.prod` as a `LinearIsometryEquiv`. -/
def prodL :
ContinuousMultilinearMap 𝕜 E G × ContinuousMultilinearMap 𝕜 E G' ≃ₗᵢ[𝕜]
ContinuousMultilinearMap 𝕜 E (G × G') where
toFun f := f.1.prod f.2
invFun f :=
((ContinuousLinearMap.fst 𝕜 G G').compContinuousMultilinearMap f,
(ContinuousLinearMap.snd 𝕜 G G').compContinuousMultilinearMap f)
map_add' f g := rfl
map_smul' c f := rfl
left_inv f := by ext <;> rfl
right_inv f := by ext <;> rfl
norm_map' f := opNorm_prod f.1 f.2
set_option linter.uppercaseLean3 false in
#align continuous_multilinear_map.prodL ContinuousMultilinearMap.prodL
/-- `ContinuousMultilinearMap.pi` as a `LinearIsometryEquiv`. -/
def piₗᵢ {ι' : Type v'} [Fintype ι'] {E' : ι' → Type wE'} [∀ i', NormedAddCommGroup (E' i')]
[∀ i', NormedSpace 𝕜 (E' i')] :
@LinearIsometryEquiv 𝕜 𝕜 _ _ (RingHom.id 𝕜) _ _ _ (∀ i', ContinuousMultilinearMap 𝕜 E (E' i'))
(ContinuousMultilinearMap 𝕜 E (∀ i, E' i)) _ _ (@Pi.module ι' _ 𝕜 _ _ fun _ => inferInstance)
_ where
toLinearEquiv := piLinearEquiv
norm_map' := opNorm_pi
#align continuous_multilinear_map.piₗᵢ ContinuousMultilinearMap.piₗᵢ
end
end
section RestrictScalars
variable {𝕜' : Type*} [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜' 𝕜]
variable [NormedSpace 𝕜' G] [IsScalarTower 𝕜' 𝕜 G]
variable [∀ i, NormedSpace 𝕜' (E i)] [∀ i, IsScalarTower 𝕜' 𝕜 (E i)]
@[simp]
theorem norm_restrictScalars : ‖f.restrictScalars 𝕜'‖ = ‖f‖ := rfl
#align continuous_multilinear_map.norm_restrict_scalars ContinuousMultilinearMap.norm_restrictScalars
variable (𝕜')
/-- `ContinuousMultilinearMap.restrictScalars` as a `LinearIsometry`. -/
def restrictScalarsₗᵢ : ContinuousMultilinearMap 𝕜 E G →ₗᵢ[𝕜'] ContinuousMultilinearMap 𝕜' E G where
toFun := restrictScalars 𝕜'
map_add' _ _ := rfl
map_smul' _ _ := rfl
norm_map' _ := rfl
#align continuous_multilinear_map.restrict_scalarsₗᵢ ContinuousMultilinearMap.restrictScalarsₗᵢ
/-- `ContinuousMultilinearMap.restrictScalars` as a `ContinuousLinearMap`. -/
def restrictScalarsLinear : ContinuousMultilinearMap 𝕜 E G →L[𝕜'] ContinuousMultilinearMap 𝕜' E G :=
(restrictScalarsₗᵢ 𝕜').toContinuousLinearMap
#align continuous_multilinear_map.restrict_scalars_linear ContinuousMultilinearMap.restrictScalarsLinear
variable {𝕜'}
theorem continuous_restrictScalars :
Continuous
(restrictScalars 𝕜' : ContinuousMultilinearMap 𝕜 E G → ContinuousMultilinearMap 𝕜' E G) :=
(restrictScalarsLinear 𝕜').continuous
#align continuous_multilinear_map.continuous_restrict_scalars ContinuousMultilinearMap.continuous_restrictScalars
end RestrictScalars
/-- The difference `f m₁ - f m₂` is controlled in terms of `‖f‖` and `‖m₁ - m₂‖`, precise version.
For a less precise but more usable version, see `norm_image_sub_le`. The bound reads
`‖f m - f m'‖ ≤
‖f‖ * ‖m 1 - m' 1‖ * max ‖m 2‖ ‖m' 2‖ * max ‖m 3‖ ‖m' 3‖ * ... * max ‖m n‖ ‖m' n‖ + ...`,
where the other terms in the sum are the same products where `1` is replaced by any `i`. -/
theorem norm_image_sub_le' [DecidableEq ι] (m₁ m₂ : ∀ i, E i) :
‖f m₁ - f m₂‖ ≤ ‖f‖ * ∑ i, ∏ j, if j = i then ‖m₁ i - m₂ i‖ else max ‖m₁ j‖ ‖m₂ j‖ :=
f.toMultilinearMap.norm_image_sub_le_of_bound' (norm_nonneg _) f.le_opNorm _ _
#align continuous_multilinear_map.norm_image_sub_le' ContinuousMultilinearMap.norm_image_sub_le'
/-- The difference `f m₁ - f m₂` is controlled in terms of `‖f‖` and `‖m₁ - m₂‖`, less precise
version. For a more precise but less usable version, see `norm_image_sub_le'`.
The bound is `‖f m - f m'‖ ≤ ‖f‖ * card ι * ‖m - m'‖ * (max ‖m‖ ‖m'‖) ^ (card ι - 1)`. -/
theorem norm_image_sub_le (m₁ m₂ : ∀ i, E i) :
‖f m₁ - f m₂‖ ≤ ‖f‖ * Fintype.card ι * max ‖m₁‖ ‖m₂‖ ^ (Fintype.card ι - 1) * ‖m₁ - m₂‖ :=
f.toMultilinearMap.norm_image_sub_le_of_bound (norm_nonneg _) f.le_opNorm _ _
#align continuous_multilinear_map.norm_image_sub_le ContinuousMultilinearMap.norm_image_sub_le
/-- Applying a multilinear map to a vector is continuous in both coordinates. -/
theorem continuous_eval : Continuous
fun p : ContinuousMultilinearMap 𝕜 E G × ∀ i, E i => p.1 p.2 := by
apply continuous_iff_continuousAt.2 fun p => ?_
apply
continuousAt_of_locally_lipschitz zero_lt_one
((‖p‖ + 1) * Fintype.card ι * (‖p‖ + 1) ^ (Fintype.card ι - 1) + ∏ i, ‖p.2 i‖) fun q hq => ?_
have : 0 ≤ max ‖q.2‖ ‖p.2‖ := by simp
have : 0 ≤ ‖p‖ + 1 := zero_le_one.trans ((le_add_iff_nonneg_left 1).2 <| norm_nonneg p)
have A : ‖q‖ ≤ ‖p‖ + 1 := norm_le_of_mem_closedBall hq.le
have : max ‖q.2‖ ‖p.2‖ ≤ ‖p‖ + 1 :=
(max_le_max (norm_snd_le q) (norm_snd_le p)).trans (by simp [A, zero_le_one])
have : ∀ i : ι, i ∈ univ → 0 ≤ ‖p.2 i‖ := fun i _ => norm_nonneg _
calc
dist (q.1 q.2) (p.1 p.2) ≤ dist (q.1 q.2) (q.1 p.2) + dist (q.1 p.2) (p.1 p.2) :=
dist_triangle _ _ _
_ = ‖q.1 q.2 - q.1 p.2‖ + ‖q.1 p.2 - p.1 p.2‖ := by rw [dist_eq_norm, dist_eq_norm]
_ ≤ ‖q.1‖ * Fintype.card ι * max ‖q.2‖ ‖p.2‖ ^ (Fintype.card ι - 1) * ‖q.2 - p.2‖ +
‖q.1 - p.1‖ * ∏ i, ‖p.2 i‖ :=
(add_le_add (norm_image_sub_le _ _ _) ((q.1 - p.1).le_opNorm p.2))
_ ≤ (‖p‖ + 1) * Fintype.card ι * (‖p‖ + 1) ^ (Fintype.card ι - 1) * ‖q - p‖ +
‖q - p‖ * ∏ i, ‖p.2 i‖ := by
apply_rules [add_le_add, mul_le_mul, le_refl, le_trans (norm_fst_le q) A, Nat.cast_nonneg,
mul_nonneg, pow_le_pow_left, pow_nonneg, norm_snd_le (q - p), norm_nonneg,
norm_fst_le (q - p), prod_nonneg]
_ = ((‖p‖ + 1) * Fintype.card ι * (‖p‖ + 1) ^ (Fintype.card ι - 1) + ∏ i, ‖p.2 i‖)
* dist q p := by
rw [dist_eq_norm]
ring
#align continuous_multilinear_map.continuous_eval ContinuousMultilinearMap.continuous_eval
end ContinuousMultilinearMap
/-- If a continuous multilinear map is constructed from a multilinear map via the constructor
`mkContinuous`, then its norm is bounded by the bound given to the constructor if it is
nonnegative. -/
theorem MultilinearMap.mkContinuous_norm_le (f : MultilinearMap 𝕜 E G) {C : ℝ} (hC : 0 ≤ C)
(H : ∀ m, ‖f m‖ ≤ C * ∏ i, ‖m i‖) : ‖f.mkContinuous C H‖ ≤ C :=
ContinuousMultilinearMap.opNorm_le_bound _ hC fun m => H m
#align multilinear_map.mk_continuous_norm_le MultilinearMap.mkContinuous_norm_le
/-- If a continuous multilinear map is constructed from a multilinear map via the constructor
`mkContinuous`, then its norm is bounded by the bound given to the constructor if it is
nonnegative. -/
theorem MultilinearMap.mkContinuous_norm_le' (f : MultilinearMap 𝕜 E G) {C : ℝ}
(H : ∀ m, ‖f m‖ ≤ C * ∏ i, ‖m i‖) : ‖f.mkContinuous C H‖ ≤ max C 0 :=
ContinuousMultilinearMap.opNorm_le_bound _ (le_max_right _ _) fun m =>
(H m).trans <|
mul_le_mul_of_nonneg_right (le_max_left _ _) (prod_nonneg fun _ _ => norm_nonneg _)
#align multilinear_map.mk_continuous_norm_le' MultilinearMap.mkContinuous_norm_le'
namespace ContinuousMultilinearMap
/-- Given a continuous multilinear map `f` on `n` variables (parameterized by `Fin n`) and a subset
`s` of `k` of these variables, one gets a new continuous multilinear map on `Fin k` by varying
these variables, and fixing the other ones equal to a given value `z`. It is denoted by
`f.restr s hk z`, where `hk` is a proof that the cardinality of `s` is `k`. The implicit
identification between `Fin k` and `s` that we use is the canonical (increasing) bijection. -/
def restr {k n : ℕ} (f : (G[×n]→L[𝕜] G' : _)) (s : Finset (Fin n)) (hk : s.card = k) (z : G) :
G[×k]→L[𝕜] G' :=
(f.toMultilinearMap.restr s hk z).mkContinuous (‖f‖ * ‖z‖ ^ (n - k)) fun _ =>
MultilinearMap.restr_norm_le _ _ _ _ f.le_opNorm _
#align continuous_multilinear_map.restr ContinuousMultilinearMap.restr
theorem norm_restr {k n : ℕ} (f : G[×n]→L[𝕜] G') (s : Finset (Fin n)) (hk : s.card = k) (z : G) :
‖f.restr s hk z‖ ≤ ‖f‖ * ‖z‖ ^ (n - k) := by
apply MultilinearMap.mkContinuous_norm_le
exact mul_nonneg (norm_nonneg _) (pow_nonneg (norm_nonneg _) _)
#align continuous_multilinear_map.norm_restr ContinuousMultilinearMap.norm_restr
section
variable {A : Type*} [NormedCommRing A] [NormedAlgebra 𝕜 A]
@[simp]
theorem norm_mkPiAlgebra_le [Nonempty ι] : ‖ContinuousMultilinearMap.mkPiAlgebra 𝕜 ι A‖ ≤ 1 := by
refine opNorm_le_bound _ zero_le_one fun m => ?_
simp only [ContinuousMultilinearMap.mkPiAlgebra_apply, one_mul]
exact norm_prod_le' _ univ_nonempty _
#align continuous_multilinear_map.norm_mk_pi_algebra_le ContinuousMultilinearMap.norm_mkPiAlgebra_le
theorem norm_mkPiAlgebra_of_empty [IsEmpty ι] :
‖ContinuousMultilinearMap.mkPiAlgebra 𝕜 ι A‖ = ‖(1 : A)‖ := by
apply le_antisymm
· apply opNorm_le_bound <;> simp
· -- Porting note: have to annotate types to get mvars to unify
convert ratio_le_opNorm (ContinuousMultilinearMap.mkPiAlgebra 𝕜 ι A) fun _ => (1 : A)
simp [eq_empty_of_isEmpty (univ : Finset ι)]
#align continuous_multilinear_map.norm_mk_pi_algebra_of_empty ContinuousMultilinearMap.norm_mkPiAlgebra_of_empty
@[simp]
theorem norm_mkPiAlgebra [NormOneClass A] : ‖ContinuousMultilinearMap.mkPiAlgebra 𝕜 ι A‖ = 1 := by
cases isEmpty_or_nonempty ι
· simp [norm_mkPiAlgebra_of_empty]
· refine' le_antisymm norm_mkPiAlgebra_le _
convert ratio_le_opNorm (ContinuousMultilinearMap.mkPiAlgebra 𝕜 ι A) fun _ => 1
simp
#align continuous_multilinear_map.norm_mk_pi_algebra ContinuousMultilinearMap.norm_mkPiAlgebra
end
section
variable {A : Type*} [NormedRing A] [NormedAlgebra 𝕜 A]
theorem norm_mkPiAlgebraFin_succ_le : ‖ContinuousMultilinearMap.mkPiAlgebraFin 𝕜 n.succ A‖ ≤ 1 := by
refine opNorm_le_bound _ zero_le_one fun m => ?_
simp only [ContinuousMultilinearMap.mkPiAlgebraFin_apply, one_mul, List.ofFn_eq_map,
Fin.prod_univ_def, Multiset.map_coe, Multiset.prod_coe]
refine' (List.norm_prod_le' _).trans_eq _
· rw [Ne, List.map_eq_nil, List.finRange_eq_nil]
exact Nat.succ_ne_zero _
rw [List.map_map, Function.comp_def]
#align continuous_multilinear_map.norm_mk_pi_algebra_fin_succ_le ContinuousMultilinearMap.norm_mkPiAlgebraFin_succ_le
theorem norm_mkPiAlgebraFin_le_of_pos (hn : 0 < n) :
‖ContinuousMultilinearMap.mkPiAlgebraFin 𝕜 n A‖ ≤ 1 := by
obtain ⟨n, rfl⟩ := Nat.exists_eq_succ_of_ne_zero hn.ne'
exact norm_mkPiAlgebraFin_succ_le
#align continuous_multilinear_map.norm_mk_pi_algebra_fin_le_of_pos ContinuousMultilinearMap.norm_mkPiAlgebraFin_le_of_pos
theorem norm_mkPiAlgebraFin_zero : ‖ContinuousMultilinearMap.mkPiAlgebraFin 𝕜 0 A‖ = ‖(1 : A)‖ := by
refine' le_antisymm _ _
· refine opNorm_le_bound _ (norm_nonneg (1 : A)) ?_
simp
· convert ratio_le_opNorm (ContinuousMultilinearMap.mkPiAlgebraFin 𝕜 0 A) fun _ => (1 : A)
simp
#align continuous_multilinear_map.norm_mk_pi_algebra_fin_zero ContinuousMultilinearMap.norm_mkPiAlgebraFin_zero
@[simp]
theorem norm_mkPiAlgebraFin [NormOneClass A] :
‖ContinuousMultilinearMap.mkPiAlgebraFin 𝕜 n A‖ = 1 := by
cases n
· rw [norm_mkPiAlgebraFin_zero]
simp
· refine' le_antisymm norm_mkPiAlgebraFin_succ_le _
refine le_of_eq_of_le ?_ <|
ratio_le_opNorm (ContinuousMultilinearMap.mkPiAlgebraFin 𝕜 (Nat.succ _) A) fun _ => 1
simp
#align continuous_multilinear_map.norm_mk_pi_algebra_fin ContinuousMultilinearMap.norm_mkPiAlgebraFin
end
@[simp]
theorem nnnorm_smulRight (f : ContinuousMultilinearMap 𝕜 E 𝕜) (z : G) :
‖f.smulRight z‖₊ = ‖f‖₊ * ‖z‖₊ := by
refine le_antisymm ?_ ?_
· refine (opNNNorm_le_iff _ |>.2 fun m => (nnnorm_smul_le _ _).trans ?_)
rw [mul_right_comm]
gcongr
exact le_opNNNorm _ _
· obtain hz | hz := eq_or_ne ‖z‖₊ 0
· simp [hz]
rw [← NNReal.le_div_iff hz, opNNNorm_le_iff]
intro m
rw [div_mul_eq_mul_div, NNReal.le_div_iff hz]
refine le_trans ?_ ((f.smulRight z).le_opNNNorm m)
rw [smulRight_apply, nnnorm_smul]
@[simp]
theorem norm_smulRight (f : ContinuousMultilinearMap 𝕜 E 𝕜) (z : G) :
‖f.smulRight z‖ = ‖f‖ * ‖z‖ :=
congr_arg NNReal.toReal (nnnorm_smulRight f z)
@[simp]
theorem norm_mkPiRing (z : G) : ‖ContinuousMultilinearMap.mkPiRing 𝕜 ι z‖ = ‖z‖ := by
rw [ContinuousMultilinearMap.mkPiRing, norm_smulRight, norm_mkPiAlgebra, one_mul]
#align continuous_multilinear_map.norm_mk_pi_field ContinuousMultilinearMap.norm_mkPiRing
variable (𝕜 E G) in
/-- Continuous bilinear map realizing `(f, z) ↦ f.smulRight z`. -/
def smulRightL : ContinuousMultilinearMap 𝕜 E 𝕜 →L[𝕜] G →L[𝕜] ContinuousMultilinearMap 𝕜 E G :=
LinearMap.mkContinuous₂
{ toFun := fun f ↦
{ toFun := fun z ↦ f.smulRight z
map_add' := fun x y ↦ by ext; simp
map_smul' := fun c x ↦ by ext; simp [smul_smul, mul_comm] }
map_add' := fun f g ↦ by ext; simp [add_smul]
map_smul' := fun c f ↦ by ext; simp [smul_smul] }
1 (fun f z ↦ by simp [norm_smulRight])
@[simp] lemma smulRightL_apply (f : ContinuousMultilinearMap 𝕜 E 𝕜) (z : G) :
smulRightL 𝕜 E G f z = f.smulRight z := rfl
variable (𝕜 E G) in
/-- An auxiliary instance to be able to just state the fact that the norm of `smulRightL` makes
sense. This shouldn't be needed. See lean4#3927. -/
def seminormedAddCommGroup_aux_for_smulRightL :
SeminormedAddCommGroup
(ContinuousMultilinearMap 𝕜 E 𝕜 →L[𝕜] G →L[𝕜] ContinuousMultilinearMap 𝕜 E G) :=
ContinuousLinearMap.toSeminormedAddCommGroup
(F := G →L[𝕜] ContinuousMultilinearMap 𝕜 E G) (σ₁₂ := RingHom.id 𝕜)
lemma norm_smulRightL_le :
letI := seminormedAddCommGroup_aux_for_smulRightL 𝕜 E G
‖smulRightL 𝕜 E G‖ ≤ 1 :=
LinearMap.mkContinuous₂_norm_le _ zero_le_one _
variable (𝕜 ι G)
/-- Continuous multilinear maps on `𝕜^n` with values in `G` are in bijection with `G`, as such a
continuous multilinear map is completely determined by its value on the constant vector made of
ones. We register this bijection as a linear isometry in
`ContinuousMultilinearMap.piFieldEquiv`. -/
protected def piFieldEquiv : G ≃ₗᵢ[𝕜] ContinuousMultilinearMap 𝕜 (fun _ : ι => 𝕜) G where
toFun z := ContinuousMultilinearMap.mkPiRing 𝕜 ι z
invFun f := f fun i => 1
map_add' z z' := by
ext m
simp [smul_add]
map_smul' c z := by
ext m
simp [smul_smul, mul_comm]
left_inv z := by simp
right_inv f := f.mkPiRing_apply_one_eq_self
norm_map' := norm_mkPiRing
#align continuous_multilinear_map.pi_field_equiv ContinuousMultilinearMap.piFieldEquiv
end ContinuousMultilinearMap
namespace ContinuousLinearMap
theorem norm_compContinuousMultilinearMap_le (g : G →L[𝕜] G') (f : ContinuousMultilinearMap 𝕜 E G) :
‖g.compContinuousMultilinearMap f‖ ≤ ‖g‖ * ‖f‖ :=
ContinuousMultilinearMap.opNorm_le_bound _ (mul_nonneg (norm_nonneg _) (norm_nonneg _)) fun m =>
calc
‖g (f m)‖ ≤ ‖g‖ * (‖f‖ * ∏ i, ‖m i‖) := g.le_opNorm_of_le <| f.le_opNorm _
_ = _ := (mul_assoc _ _ _).symm
#align continuous_linear_map.norm_comp_continuous_multilinear_map_le ContinuousLinearMap.norm_compContinuousMultilinearMap_le