-
Notifications
You must be signed in to change notification settings - Fork 384
/
Copy pathDivisionPolynomial.lean
673 lines (529 loc) · 33.2 KB
/
DivisionPolynomial.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
/-
Copyright (c) 2024 David Kurniadi Angdinata. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: David Kurniadi Angdinata, Junyan Xu
-/
import Mathlib.AlgebraicGeometry.EllipticCurve.Universal
import Mathlib.Data.Int.Parity
import Mathlib.NumberTheory.EllipticDivisibilitySequence
/-!
# Division polynomials for elliptic curves
This file defines division polynomials for elliptic curves and show they give a formula for
scalar multiplication on the group of rational points in Jacobian coordinates.
-/
open scoped PolynomialPolynomial
namespace Polynomial -- move this to Affine?
variable {R : Type*}
noncomputable section
/-- `evalEval x y p` is the evaluation `p(x,y)` of a two-variable polynomial `p : R[X][Y]`. -/
abbrev evalEval [Semiring R] (x y : R) (p : R[X][Y]) : R := eval x (eval (C y) p)
/-- `evalEval x y` as a ring homomorphism. -/
@[simps!] abbrev evalEvalRingHom [CommSemiring R] (x y : R) : R[X][Y] →+* R :=
(evalRingHom x).comp (evalRingHom <| C y)
/-- A constant viewed as a polynomial in two variables. -/
abbrev CC [Semiring R] (r : R) : R[X][Y] := C (C r)
lemma coe_algebraMap_eq_CC [CommSemiring R] : algebraMap R R[X][Y] = CC (R := R) := rfl
lemma coe_evalEvalRingHom [CommSemiring R] (x y : R) : evalEvalRingHom x y = evalEval x y := rfl
end
end Polynomial
namespace WeierstrassCurve
open Polynomial
local macro "C_simp" : tactic =>
`(tactic| simp only [map_ofNat, C_0, C_1, C_neg, C_add, C_sub, C_mul, C_pow])
variable {R S : Type*} [CommRing R] [CommRing S] (W : WeierstrassCurve R) (f : R →+* S)
noncomputable section
/-- The second division polynomial is simply the derivative of the Weierstrass polynomial
with respect to `Y`. -/
protected abbrev ψ₂ : R[X][Y] := Affine.polynomialY W
/- Implementation note: protect to force the use of dot notation,
since ψ etc. are common variable names. -/
/-- A single variable polynomial congruent to the square of the second division polynomial
modulo the Weierstrass polynomial. -/
protected def ψ₂Sq : R[X] := 4 * X ^ 3 + C W.b₂ * X ^ 2 + 2 * C W.b₄ * X + C W.b₆
/-- The third division polynomial, in a single variable. -/
protected def ψ₃ : R[X] := 3 * X ^ 4 + C W.b₂ * X ^ 3 + 3 * C W.b₄ * X ^ 2 + 3 * C W.b₆ * X + C W.b₈
/-- The complement of the second division polynomial in the fourth, in a single variable. -/
protected def ψc₂ : R[X] := 2 * X ^ 6 + C W.b₂ * X ^ 5 + 5 * C W.b₄ * X ^ 4 + 10 * C W.b₆ * X ^ 3
+ 10 * C W.b₈ * X ^ 2 + C (W.b₂ * W.b₈ - W.b₄ * W.b₆) * X + C (W.b₄ * W.b₈ - W.b₆ ^ 2)
/-- The "invariant" that is equal to the quotient
`(ψ(n-1)²ψ(n+2)+ψ(n-2)ψ(n+1)²+ψ₂²ψ(n)³)/ψ(n+1)ψ(n)ψ(n-1)` for arbitary `n`
modulo the Weierstrass polynomial. -/
def invar : R[X] := 6 * X ^ 2 + C W.b₂ * X + C W.b₄
/-- The `ψ` family of division polynomials is the normalised EDS given by the initial values
ψ₂, ψ₃, and ψc₂. `ψ n` gives the last (`Z`) coordinate in Jacobian coordinates of the scalar
multiplication by the integer `n` of a point on a Weierstrass curve. -/
protected def ψ : ℤ → R[X][Y] := normEDS W.ψ₂ (C W.ψ₃) (C W.ψc₂)
/-- The `φ` family of division polynomials; `φ n` gives the first (`X`) coordinate in
Jacobian coordinates of the scalar multiplication by `n`. -/
protected def φ (n : ℤ) : R[X][Y] := C X * W.ψ n ^ 2 - W.ψ (n + 1) * W.ψ (n - 1)
/-- The complement of ψ(n) in ψ(2n). -/
def ψc : ℤ → R[X][Y] := compl₂EDS W.ψ₂ (C W.ψ₃) (C W.ψc₂)
lemma isEllSequence_ψ : IsEllSequence W.ψ := IsEllSequence.normEDS
open Affine (polynomial polynomialX polynomialY negPolynomial)
open EllSequence
open WeierstrassCurve (ψc₂ ψ₂ ψ₂Sq ψ₃ ψ φ ψc)
lemma C_ψ₃_eq :
C W.ψ₃ = (3 * C X + CC W.a₂) * C W.ψ₂Sq - polynomialX W ^ 2
+ CC W.a₁ * W.ψ₂ * polynomialX W - CC W.a₁ ^ 2 * polynomial W := by
simp_rw [ψ₃, ψ₂Sq, polynomial, polynomialX, polynomialY, b₂, b₄, b₆, b₈, CC]; C_simp; ring
lemma ψ₂_sq : W.ψ₂ ^ 2 = C W.ψ₂Sq + 4 * polynomial W := by
rw [Affine.polynomial, ψ₂, polynomialY, ψ₂Sq, b₂, b₄, b₆]; C_simp; ring
lemma ψc₂_add_ψ₂Sq_sq : W.ψc₂ + W.ψ₂Sq ^ 2 = W.invar * W.ψ₃ := by
rw [ψc₂, ψ₂Sq, invar, ψ₃]
linear_combination (norm := (C_simp; ring_nf)) congr(C $W.b_relation) * (@X R _) ^ 2
lemma ψc₂_add_ψ₂_pow_four :
C W.ψc₂ + W.ψ₂ ^ 4 = C (W.invar * W.ψ₃) + 8 * polynomial W * (2 * polynomial W + C W.ψ₂Sq) := by
simp_rw [show 4 = 2 * 2 by rfl, pow_mul, ψ₂_sq, add_sq,
← add_assoc, ← C_pow, ← C_add, ψc₂_add_ψ₂Sq_sq]; C_simp; ring
lemma φ_mul_ψ (n : ℤ) : W.φ n * W.ψ n = C X * W.ψ n ^ 3 - invarDenom W.ψ 1 n := by
rw [φ, invarDenom]; ring
suppress_compilation in
/-- The `ω` family of division polynomials: `ω n` gives the second (`Y`) coordinate in
Jacobian coordinates of the scalar multiplication by `n`. -/
protected def ω (n : ℤ) : R[X][Y] :=
redInvarDenom W.ψ₂ (C W.ψ₃) (C W.ψc₂) n *
((CC W.a₁ * polynomialY W - polynomialX W) * C W.ψ₃
+ 4 * polynomial W * (2 * polynomial W + C W.ψ₂Sq))
- compl₂EDSAux W.ψ₂ (C W.ψ₃) (C W.ψc₂) n + negPolynomial W * W.ψ n ^ 3
open WeierstrassCurve (ω)
lemma ω_spec (n : ℤ) :
2 * W.ω n + CC W.a₁ * W.φ n * W.ψ n + CC W.a₃ * W.ψ n ^ 3 = W.ψc n := by
rw [ψc, compl₂EDS_eq_redInvarNum_sub, redInvar_normEDS, ψc₂_add_ψ₂_pow_four, mul_assoc (C _),
φ_mul_ψ, ψ, invarDenom_eq_redInvarDenom_mul, ω, ← ψ, invar, b₂, b₄, ψ₂,
polynomialY, polynomialX, negPolynomial]
C_simp; ring
lemma two_mul_ω (n : ℤ) :
2 * W.ω n = W.ψc n - CC W.a₁ * W.φ n * W.ψ n - CC W.a₃ * W.ψ n ^ 3 := by
rw [← ω_spec]; abel
lemma ψc_spec (n : ℤ) : W.ψ n * W.ψc n = W.ψ (2 * n) := normEDS_mul_compl₂EDS _ _ _ _
@[simp] lemma ψ_zero : W.ψ 0 = 0 := by simp [ψ]
@[simp] lemma ψ_one : W.ψ 1 = 1 := by simp [ψ]
@[simp] lemma ψ_two : W.ψ 2 = W.ψ₂ := by simp [ψ]
@[simp] lemma ψ_three : W.ψ 3 = C W.ψ₃ := by simp [ψ]
@[simp] lemma ψ_four : W.ψ 4 = C W.ψc₂ * W.ψ₂ := by simp [ψ]
@[simp] lemma φ_zero : W.φ 0 = 1 := by simp [φ, ψ]
@[simp] lemma φ_one : W.φ 1 = C X := by simp [φ, ψ]
@[simp] lemma φ_two : W.φ 2 = C X * W.ψ₂ ^ 2 - C W.ψ₃ := by simp [φ]
@[simp] lemma ω_zero : W.ω 0 = 1 := by simp [ω]
@[simp] lemma ω_one : W.ω 1 = Y := by simp [ω, ← Affine.Y_sub_polynomialY]
@[simp] lemma ψ_neg (n : ℤ) : W.ψ (-n) = -W.ψ n := by simp [ψ]
@[simp] lemma ψc_neg (n : ℤ) : W.ψc (-n) = W.ψc n := by simp [ψc]
@[simp] lemma φ_neg (n : ℤ) : W.φ (-n) = W.φ n := by
rw [φ, φ, neg_add_eq_sub, ← neg_sub n, ← neg_add', ψ_neg, ψ_neg, ψ_neg]; ring
@[simp] lemma map_ψ₂ : (W.map f).ψ₂ = W.ψ₂.map (mapRingHom f) := by simp [ψ₂, polynomialY]
@[simp] lemma map_ψ₃ : (W.map f).ψ₃ = W.ψ₃.map f := by simp [ψ₃]
@[simp] lemma map_ψc₂ : (W.map f).ψc₂ = W.ψc₂.map f := by simp [ψc₂]
@[simp] lemma map_ψ₂Sq : (W.map f).ψ₂Sq = W.ψ₂Sq.map f := by simp [ψ₂Sq]
@[simp] lemma map_ψ (n : ℤ) : (W.map f).ψ n = (W.ψ n).map (mapRingHom f) := by
simp_rw [ψ, ← coe_mapRingHom, map_normEDS]; simp
@[simp] lemma map_φ (n : ℤ) : (W.map f).φ n = (W.φ n).map (mapRingHom f) := by simp [φ]
open Affine in
@[simp] lemma map_ω (n : ℤ) : (W.map f).ω n = (W.ω n).map (mapRingHom f) := by
simp_rw [ω, ← coe_mapRingHom, map_add, map_sub, map_mul, map_redInvarDenom, map_compl₂EDSAux,
map_polynomial, map_polynomialX, map_polynomialY, map_negPolynomial]; simp
private lemma universal_ω_neg (n : ℤ) : letI W := Universal.curve
W.ω (-n) = W.ω n + CC W.a₁ * W.φ n * W.ψ n + CC W.a₃ * W.ψ n ^ 3 := by
rw [← mul_cancel_left_mem_nonZeroDivisors
(mem_nonZeroDivisors_of_ne_zero Universal.Poly.two_ne_zero)]
simp_rw [left_distrib, two_mul_ω, ψc_neg, ψ_neg, φ_neg]; ring
lemma ω_neg (n : ℤ) : W.ω (-n) = W.ω n + CC W.a₁ * W.φ n * W.ψ n + CC W.a₃ * W.ψ n ^ 3 := by
rw [← W.map_specialize, map_ω, universal_ω_neg]; simp
variable {x y : R}
namespace Universal
lemma evalEval_ψ₂ : W.ψ₂.evalEval x y = W.polyEval x y curve.ψ₂ := by
simp_rw [polyEval, eval₂RingHom_eval₂RingHom_apply, ← map_ψ₂, map_specialize]
lemma evalEval_ψ₃ : (C W.ψ₃).evalEval x y = W.polyEval x y (C curve.ψ₃) := by
simp_rw [polyEval, eval₂RingHom_eval₂RingHom_apply,
map_C, coe_mapRingHom, ← map_ψ₃, map_specialize]
lemma evalEval_ψc₂ : (C W.ψc₂).evalEval x y = W.polyEval x y (C curve.ψc₂) := by
simp_rw [polyEval, eval₂RingHom_eval₂RingHom_apply,
map_C, coe_mapRingHom, ← map_ψc₂, map_specialize]
variable {m n : ℤ}
lemma evalEval_ψ : (W.ψ n).evalEval x y = W.polyEval x y (curve.ψ n) := by
simp_rw [polyEval, eval₂RingHom_eval₂RingHom_apply, ← map_ψ, map_specialize]
lemma evalEval_φ : (W.φ n).evalEval x y = W.polyEval x y (curve.φ n) := by
simp_rw [polyEval, eval₂RingHom_eval₂RingHom_apply, ← map_φ, map_specialize]
lemma evalEval_ω : (W.ω n).evalEval x y = W.polyEval x y (curve.ω n) := by
simp_rw [polyEval, eval₂RingHom_eval₂RingHom_apply, ← map_ω, map_specialize]
@[simp] lemma pointedCurve_a₁ : pointedCurve.a₁ = polyToField (CC curve.a₁) := rfl
@[simp] lemma pointedCurve_a₂ : pointedCurve.a₂ = polyToField (CC curve.a₂) := rfl
@[simp] lemma pointedCurve_a₃ : pointedCurve.a₃ = polyToField (CC curve.a₃) := rfl
@[simp] lemma pointedCurve_a₄ : pointedCurve.a₄ = polyToField (CC curve.a₄) := rfl
@[simp] lemma pointedCurve_a₆ : pointedCurve.a₆ = polyToField (CC curve.a₆) := rfl
/-- The cusp curve $Y^2 = X^3$ over ℤ. -/
def cusp : Affine ℤ := { a₁ := 0, a₂ := 0, a₃ := 0, a₄ := 0, a₆ := 0 }
lemma cusp_equation_one_one : cusp.Equation 1 1 := by simp [Affine.Equation, polynomial, cusp]
lemma cusp_ψ₂ : cusp.ψ₂ = 2 * Y := by simp [cusp, ψ₂, polynomialY]
lemma cusp_ψ₃ : cusp.ψ₃ = 3 * X ^ 4 := by simp [cusp, ψ₃, b₂, b₄, b₆, b₈]
lemma cusp_ψc₂ : cusp.ψc₂ = 2 * X ^ 6 := by simp [cusp, ψc₂, b₂, b₄, b₆, b₈]
lemma polyEval_cusp_ψ : cusp.polyEval 1 1 (curve.ψ n) = n := by
rw [ψ, map_normEDS, ← evalEval_ψ₂, ← evalEval_ψ₃, ← evalEval_ψc₂, cusp_ψ₂, cusp_ψ₃, cusp_ψc₂]
simp [evalEval, normEDS_two_three_two]
lemma polyEval_cusp_φ : cusp.polyEval 1 1 (curve.φ n) = 1 := by
simp_rw [φ, map_sub, map_mul, map_pow, polyEval_cusp_ψ, polyEval]
simp only [coe_eval₂RingHom, eval₂_C, eval₂_X]; ring
lemma polyEval_cusp_ψc : cusp.polyEval 1 1 (curve.ψc n) = 2 := by
rw [ψc, map_compl₂EDS, ← evalEval_ψ₂, ← evalEval_ψ₃, ← evalEval_ψc₂, cusp_ψ₂, cusp_ψ₃, cusp_ψc₂]
simp [evalEval, compl₂EDS_two_three_two]
lemma polyEval_cusp_ω : cusp.polyEval 1 1 (curve.ω n) = 1 := by
have := congr(cusp.polyEval 1 1 $(curve.two_mul_ω n))
simp_rw [map_sub, map_mul, map_ofNat, polyEval_cusp_ψc] at this
simpa [cusp, polyEval, specialize, curve] using this
protected lemma Field.two_ne_zero : (2 : Universal.Field) ≠ 0 := by
rw [← map_ofNat (algebraMap Universal.Ring _), map_ne_zero_iff _ (IsFractionRing.injective _ _)]
intro h; replace h := congr(cusp.ringEval cusp_equation_one_one $h)
rw [map_ofNat, map_zero] at h; cases h
/-- The `ψ` family of division polynomials as elements in the universal field. -/
abbrev ψᵤ (n : ℤ) : Universal.Field := polyToField (curve.ψ n)
lemma ψᵤ_eq_normEDS :
ψᵤ = normEDS
(polyToField curve.ψ₂) (polyToField <| C curve.ψ₃) (polyToField <| C curve.ψc₂) := by
ext; rw [← map_normEDS]; rfl
lemma isEllSequence_ψᵤ : IsEllSequence ψᵤ := by rw [ψᵤ_eq_normEDS]; exact IsEllSequence.normEDS
lemma net_ψᵤ (p q r s) : net ψᵤ p q r s = 0 := by rw [ψᵤ_eq_normEDS]; apply net_normEDS
lemma ψᵤ_ne_zero (h0 : n ≠ 0) : ψᵤ n ≠ 0 := fun h ↦ by
rw [ψᵤ, polyToField_apply, map_eq_zero_iff _ (IsFractionRing.injective _ _)] at h
replace h := congr(cusp.ringEval cusp_equation_one_one $h)
rw [ringEval_mk, polyEval_cusp_ψ, map_zero] at h
exact h0 h
lemma polyToField_φ_ne_zero : polyToField (curve.φ n) ≠ 0 := fun h ↦ by
rw [polyToField_apply, map_eq_zero_iff _ (IsFractionRing.injective _ _)] at h
replace h := congr(cusp.ringEval cusp_equation_one_one $h)
rw [ringEval_mk, polyEval_cusp_φ, map_zero] at h
exact one_ne_zero h
lemma polyToField_ψ₂Sq : polyToField (C curve.ψ₂Sq) = ψᵤ 2 ^ 2 := by
rw [← map_pow, ψ_two, ψ₂_sq, map_add, map_mul, polyToField_polynomial, mul_zero, add_zero]
namespace Affine
variable (n)
/-- The rational function φₙ/ψₙ², which we will show to be the `X`-coordinate
of the point `n • (X, Y)` on the universal curve. -/
def smulX : Universal.Field := polyToField (curve.φ n) / (ψᵤ n) ^ 2
/-- The rational function ωₙ/ψₙ³, which we will show to be the `Y`-coordinate
of the point `n • (X, Y)` on the universal curve. -/
def smulY : Universal.Field := polyToField (curve.ω n) / (ψᵤ n) ^ 3
variable {n}
@[simp] lemma smulX_zero : smulX 0 = 0 := by simp [smulX, ψᵤ]
@[simp] lemma smulY_zero : smulY 0 = 0 := by simp [smulY, ψᵤ]
@[simp] lemma smulX_one : smulX 1 = polyToField (C X) := by simp [smulX, ψᵤ]
@[simp] lemma smulY_one : smulY 1 = polyToField Y := by simp [smulY, ψᵤ]
lemma smulX_eq (hn : n ≠ 0) :
smulX n = smulX 1 - ψᵤ (n + 1) * ψᵤ (n - 1) / (ψᵤ n) ^ 2 := by
rw [smulX, smulX_one, φ, map_sub, sub_div, map_mul, map_pow, mul_div_cancel_right₀, map_mul]
exact pow_ne_zero _ (ψᵤ_ne_zero hn)
lemma smulX_two : smulX 2 = smulX 1 - ψᵤ 3 / (ψᵤ 2) ^ 2 := by
simp [smulX_eq two_ne_zero, ψᵤ]
lemma smulX_sub_smulX (hm : m ≠ 0) (hn : n ≠ 0) :
smulX m - smulX n = (ψᵤ (n + m) * ψᵤ (n - m)) / (ψᵤ n * ψᵤ m) ^ 2 := by
rw [smulX_eq hm, smulX_eq hn, sub_sub_sub_cancel_left, div_sub_div]
· rw [mul_pow]; congr; convert (isEllSequence_ψᵤ n m 1).symm using 1
· ring
· simp [ψᵤ]
all_goals exact pow_ne_zero _ (ψᵤ_ne_zero <| by assumption)
lemma smulX_sub_sub_smulX_add (add_ne : n + m ≠ 0) (sub_ne : n - m ≠ 0) :
smulX (n - m) - smulX (n + m) = (ψᵤ (2 * n) * ψᵤ (2 * m)) / (ψᵤ (n + m) * ψᵤ (n - m)) ^ 2 := by
rw [smulX_sub_smulX sub_ne add_ne]; ring_nf
lemma smulX_neg : smulX (-n) = smulX n := by simp_rw [smulX, φ_neg, ψᵤ, ψ_neg, ← map_pow, neg_sq]
lemma smulX_ne_zero (h0 : n ≠ 0) : smulX n ≠ 0 :=
div_ne_zero polyToField_φ_ne_zero (pow_ne_zero _ <| ψᵤ_ne_zero h0)
lemma smulX_ne_smulX (ne : m ≠ n) (ne_neg : m ≠ -n) : smulX m ≠ smulX n := by
obtain rfl | hm := eq_or_ne m 0
· rw [smulX_zero]; exact (smulX_ne_zero ne.symm).symm
obtain rfl | hn := eq_or_ne n 0
· rw [smulX_zero]; exact smulX_ne_zero ne
rw [← sub_ne_zero, smulX_sub_smulX hm hn]
rw [ne_comm, ← sub_ne_zero] at ne
rw [Ne, ← add_eq_zero_iff_eq_neg, add_comm] at ne_neg
refine div_ne_zero (mul_ne_zero ?_ ?_) (pow_ne_zero _ <| mul_ne_zero ?_ ?_) <;>
apply ψᵤ_ne_zero <;> assumption
lemma smulX_eq_smulX_iff : smulX m = smulX n ↔ m = n ∨ m = -n := by
refine ⟨fun h ↦ ?_, ?_⟩
· contrapose! h; exact smulX_ne_smulX h.1 h.2
· rintro (rfl|rfl); exacts [rfl, smulX_neg]
private lemma smulY_sub_negY_aux {F} [Field F] {a₁ a₃ x y z : F} (h0 : z ≠ 0) :
y / z ^ 3 - (-(y / z ^ 3) - a₁ * (x / z ^ 2) - a₃) =
z * (2 * y + a₁ * x * z + a₃ * z ^ 3) / z ^ 4 := by
field_simp; ring
lemma smulY_sub_negY (h0 : n ≠ 0) :
smulY n - pointedCurve.toAffine.negY (smulX n) (smulY n) = ψᵤ (2 * n) / (ψᵤ n) ^ 4 := by
simp_rw [Affine.negY, pointedCurve_a₁, pointedCurve_a₃, smulX, smulY, ψᵤ, ← ψc_spec, ← ω_spec,
map_mul, map_add, map_mul, map_pow, map_ofNat]
exact smulY_sub_negY_aux (ψᵤ_ne_zero h0)
lemma smulY_one_sub_negY :
smulY 1 - pointedCurve.toAffine.negY (smulX 1) (smulY 1) = ψᵤ 2 := by
rw [smulY_sub_negY one_ne_zero, mul_one, ψᵤ, ψᵤ, ψ_one, map_one, one_pow, div_one]
lemma smulY_one_ne_negY : smulY 1 ≠ pointedCurve.toAffine.negY (smulX 1) (smulY 1) := by
rw [← sub_ne_zero, smulY_one_sub_negY]; exact ψᵤ_ne_zero two_ne_zero
/-- The slope of the tangent line at the point (X,Y) on the universal curve. -/
def slopeOne : Universal.Field :=
pointedCurve.toAffine.slope (smulX 1) (smulX 1) (smulY 1) (smulY 1)
lemma slopeOne_eq_neg_div :
slopeOne = -polyToField curve.polynomialX / ψᵤ 2 := by
rw [slopeOne, Affine.slope_of_Yne rfl smulY_one_ne_negY, smulY_one_sub_negY, polynomialX]
congr; simp
private lemma addX_smul_one_smul_one_aux {F} [Field F] {a₁ a₂ x dx dy : F} (h0 : dy ≠ 0) :
(-dx / dy) ^ 2 + a₁ * (-dx / dy) - a₂ - x - x - x =
(dx ^ 2 - a₁ * dx * dy - (3 * x + a₂) * dy ^ 2) / dy ^ 2 := by
-- extracted lemma to make field_simp faster
field_simp; ring
lemma addX_smul_one_smul_one :
pointedCurve.toAffine.addX (smulX 1) (smulX 1) slopeOne = smulX 2 := .symm <| by
rw [smulX_two, Affine.addX, sub_eq_neg_add, ← eq_sub_iff_add_eq, ← neg_div _ (polyToField _),
slopeOne_eq_neg_div, addX_smul_one_smul_one_aux (ψᵤ_ne_zero two_ne_zero)]
simp only [map_sub, map_add, map_mul, map_pow, map_ofNat, polyToField_ψ₂Sq, ψᵤ,
ψ_two, ψ_three, C_ψ₃_eq, polyToField_polynomial, pointedCurve_a₁, pointedCurve_a₂, smulX_one]
ring
private lemma addY_smul_one_smul_one_aux {F} [Field F] {a₁ a₃ dx dy x y ψ₃ t : F} (h0 : dy ≠ 0) :
((a₁ * dy - dx) * ψ₃ + 0 * t + (-y - (a₁ * x + a₃)) * dy ^ 3) / dy ^ 3 =
-(-dx / dy * (x - ψ₃ / dy ^ 2 - x) + y) - a₁ * (x - ψ₃ / dy ^ 2) - a₃ := by
field_simp; ring
lemma addY_smul_one_smul_one :
pointedCurve.toAffine.addY (smulX 1) (smulX 1) (smulY 1) slopeOne = smulY 2 := .symm <| by
rw [smulY, ω, redInvarDenom_two, one_mul, compl₂EDSAux_two, sub_zero, Affine.addY, Affine.addY',
addX_smul_one_smul_one, smulX_two, Affine.negY, negPolynomial, slopeOne_eq_neg_div,
← ψ₂, ← ψ_two, smulX_one, smulY_one, ψᵤ, ψᵤ, ψ_three]
simp only [map_add, map_sub, map_mul, map_pow, map_neg, polyToField_polynomial, mul_zero]
exact addY_smul_one_smul_one_aux (ψᵤ_ne_zero two_ne_zero)
private lemma smulY_neg_aux {F} [Field F] {a₁ a₃ x y z : F} (hz : z ≠ 0) :
(y + a₁ * x * z + a₃ * z ^ 3) / (-z) ^ 3 = -(y / z ^ 3) - a₁ * (x / z ^ 2) - a₃ := by
rw [neg_pow]; field_simp; ring
lemma smulY_neg (h0 : n ≠ 0) :
smulY (-n) = pointedCurve.toAffine.negY (smulX n) (smulY n) := by
simp only [Affine.negY, smulX, smulY, ψ_neg, ω_neg, map_add, map_neg, map_mul, map_pow, ψᵤ]
exact smulY_neg_aux (ψᵤ_ne_zero h0)
private lemma smulX_add_aux {F} [Field F] {m n m₂ n₂ a s : F}
(hm : m ≠ 0) (hn : n ≠ 0) (ha : a ≠ 0) (hs : s ≠ 0) :
n₂ / n ^ 4 * (m₂ / m ^ 4) / (a * s / (n * m) ^ 2) ^ 2 = n₂ * m₂ / (a * s) ^ 2 := by
field_simp; ring
lemma smulX_add (hm : m ≠ 0) (hn : n ≠ 0) (add_ne : n + m ≠ 0) (sub_ne : n - m ≠ 0) :
let ψ₂ x y := y - pointedCurve.toAffine.negY x y
smulX (n + m) = smulX (n - m) -
ψ₂ (smulX n) (smulY n) * ψ₂ (smulX m) (smulY m) / (smulX m - smulX n) ^ 2 := by
rw [eq_sub_iff_add_eq, ← eq_sub_iff_add_eq', smulX_sub_sub_smulX_add add_ne sub_ne]
simp_rw [smulY_sub_negY hm, smulY_sub_negY hn, smulX_sub_smulX hm hn]
apply smulX_add_aux <;> apply ψᵤ_ne_zero <;> assumption
private lemma smulY_add_sub_negY_aux {F} [Field F] {m n m₂ n₂ a s am an : F}
(hm : m ≠ 0) (hn : n ≠ 0) (ha : a ≠ 0) (hs : s ≠ 0) :
(m₂ / m ^ 4 * (an * m / (a * n) ^ 2) - n₂ / n ^ 4 * (am * n / (a * m) ^ 2))
/ (a * s / (n * m) ^ 2)
= (an * m₂ * n - am * n₂ * m) * a / (s * n * m) / a ^ 4 := by
field_simp (config := {maxDischargeDepth := 9}); ring
lemma smulY_add_sub_negY (hm : m ≠ 0) (hn : n ≠ 0) (add_ne : n + m ≠ 0) (sub_ne : n - m ≠ 0) :
let ψ₂ x y := y - pointedCurve.toAffine.negY x y
ψ₂ (smulX (n + m)) (smulY (n + m)) =
(ψ₂ (smulX m) (smulY m) * (smulX n - smulX (n + m))
- ψ₂ (smulX n) (smulY n) * (smulX m - smulX (n + m))) / (smulX m - smulX n) := by
simp_rw [smulY_sub_negY add_ne, smulY_sub_negY hm, smulY_sub_negY hn, smulX_sub_smulX hn add_ne,
smulX_sub_smulX hm add_ne, smulX_sub_smulX hm hn, add_sub_cancel_left, add_sub_cancel_right]
rw [smulY_add_sub_negY_aux]
· congr; rw [eq_div_iff]
· linear_combination (norm := ring_nf) (net_add_sub_iff _ n m).mp (net_ψᵤ _ _ _ _)
apply_rules [mul_ne_zero, ψᵤ_ne_zero]
all_goals apply ψᵤ_ne_zero; assumption
open Affine.Point
instance : AddGroup (curve⟮Universal.Field⟯) := inferInstance -- Lean needs a reminder at add_zsmul
theorem zsmul_eq_quotient_divisionPolynomial : n ≠ 0 →
∃ h : Affine.Nonsingular _ (smulX n) (smulY n), n • Universal.point = .some h := by
induction n using Int.negInduction with
| nat n =>
refine n.strong_induction_on fun n ih h0 ↦ ?_
obtain _|_|_|n := n
· exact (h0 rfl).elim
· simp_rw [zero_add, Nat.cast_one, one_zsmul, smulX_one, smulY_one]
exact ⟨EllipticCurve.Affine.nonsingular pointedCurve equation_point, rfl⟩
all_goals obtain ⟨ns, eq⟩ := ih 1 (by omega) one_ne_zero
· erw [← addX_smul_one_smul_one, ← addY_smul_one_smul_one, zero_add, add_zsmul _ 1 1, eq]
exact ⟨Affine.nonsingular_add ns ns fun _ ↦ smulY_one_ne_negY,
dif_neg fun h ↦ smulY_one_ne_negY h.2⟩
set n2 := n + 1 + 1
obtain ⟨ns1, eq1⟩ := ih (n + 1) (by omega) (by omega)
obtain ⟨ns2, eq2⟩ := ih n2 (by omega) (by omega)
have ne : smulX n2 ≠ smulX 1 := smulX_ne_smulX (by omega) (by omega)
simp_rw [show (n + 1 : ℕ) = n2 + (-1 : ℤ) by omega, add_zsmul, neg_smul] at eq1
let _U := pointedCurve.toAffine
erw [eq2, eq, some_add_some_of_Xne ne, some_eq_some_iff] at eq1
let L := _U.slope (smulX n2) (smulX 1) (smulY n2) (smulY 1)
have X_eq : smulX (n2 + 1 : ℕ) = _U.addX (smulX n2) (smulX 1) L := by
rw [Nat.cast_add, Nat.cast_one, smulX_add one_ne_zero (by omega) (by omega) (by omega),
Affine.addX_eq_subX_sub _ _ ne, sub_eq_add_neg (n2 : ℤ), ← eq1.1]; rfl
have Y_eq : smulY (n2 + 1 : ℕ) = _U.addY (smulX n2) (smulX 1) (smulY n2) L := by
rw [← mul_cancel_left_mem_nonZeroDivisors (mem_nonZeroDivisors_of_ne_zero Field.two_ne_zero),
← add_right_cancel_iff (a := _U.a₁ * smulX (n2 + 1 : ℕ) + _U.a₃)]
convert smulY_add_sub_negY (n := n2) one_ne_zero (by omega) (by omega) (by omega) using 1
· simp_rw [Affine.negY, Nat.cast_add]; ring_nf
convert _U.addY_sub_negY (smulY n2) (smulY 1) ne using 1
· rw [Affine.negY, ← X_eq]; ring
· rw [← X_eq]; rfl
rw [X_eq, Y_eq, n2.cast_add, add_zsmul, eq, eq2]
exact ⟨Affine.nonsingular_add ns2 ns (ne · |>.elim), some_add_some_of_Xne ne⟩
| neg n hn =>
rw [neg_ne_zero]; intro h0
obtain ⟨ns, eq⟩ := hn h0
simp_rw [smulX_neg, smulY_neg h0, neg_smul, eq, neg_some]
exact ⟨Affine.nonsingular_neg ns, trivial⟩
lemma smul_point_ne_zero (h0 : n ≠ 0) : n • Universal.point ≠ 0 := by
obtain ⟨ns, eq⟩ := zsmul_eq_quotient_divisionPolynomial h0
rw [eq]; exact Affine.Point.some_ne_zero ns
end Affine
namespace Jacobian
open WeierstrassCurve.Jacobian
/-- The distinguished point on the universal curve in Jacobian coordinates. -/
protected def point : Jacobian.Point (curve.baseChange Universal.Field) :=
Jacobian.Point.fromAffine Universal.point
lemma smul_point_ne_zero (h0 : n ≠ 0) : n • Jacobian.point ≠ 0 := by
rw [Jacobian.point, ← Point.toAffineAddEquiv_symm_apply, ← map_zsmul, Ne,
map_eq_zero_iff _ Point.toAffineAddEquiv.symm.injective]
exact Affine.smul_point_ne_zero h0
lemma smul_point_ne (h : m ≠ n) : m • Jacobian.point ≠ n • Jacobian.point := by
rw [← sub_ne_zero, sub_eq_add_neg, ← sub_zsmul]
exact smul_point_ne_zero (sub_ne_zero.mpr h)
lemma point_point : Jacobian.point.point = ⟦![polyToField (C X), polyToField Y, 1]⟧ := rfl
/-- The base change of the universal curve from `ℤ[a₁,⋯,a₆]` to `ℤ[a₁,⋯,a₆,X,Y]`. -/
abbrev curvePoly : WeierstrassCurve Poly := curve.baseChange Poly
/-- The base change of the universal curve from `ℤ[a₁,⋯,a₆]` to `ℤ[a₁,⋯,a₆,X,Y]/⟨P⟩`
(the universal ring), where `P` is the Weierstrass polynomial. -/
abbrev curveRing : WeierstrassCurve Universal.Ring := curve.baseChange Universal.Ring
/-- The base change of the universal curve from `ℤ[a₁,⋯,a₆]` to `Frac(ℤ[a₁,⋯,a₆,X,Y]/⟨P⟩)`
(the universal field), where `P` is the Weierstrass polynomial. -/
abbrev curveField : WeierstrassCurve Universal.Field := curve.baseChange Universal.Field
/-- The three families of division polynomials as a 3-tuple. -/
abbrev smulPoly (n : ℤ) : Fin 3 → Poly := ![curve.φ n, curve.ω n, curve.ψ n]
/-- The three families of division polynomials as elements in the universal ring. -/
abbrev smulRing (n : ℤ) : Fin 3 → Universal.Ring := AdjoinRoot.mk _ ∘ smulPoly n
/-- The three families of division polynomials as elements in the universal field. -/
abbrev smulField (n : ℤ) : Fin 3 → Universal.Field := polyToField ∘ smulPoly n
lemma algebraMap_comp_smulRing (n : ℤ) : algebraMap _ _ ∘ smulRing n = smulField n := by
ext i; fin_cases i <;> rfl
lemma curveField_eq : curveField = pointedCurve.toWeierstrassCurve := rfl
theorem zsmul_eq_divisionPolynomial : (n • Jacobian.point).point = ⟦smulField n⟧ := by
rw [← fin3_def (smulField n), smulField, smulPoly]
simp_rw [Function.comp, fin3_def_ext]
obtain rfl | hn := eq_or_ne n 0
· simp_rw [zero_zsmul, φ_zero, ω_zero, ψ_zero, map_zero, map_one]; rfl
obtain ⟨ns, eq⟩ := Affine.zsmul_eq_quotient_divisionPolynomial hn
change (n • Jacobian.Point.toAffineAddEquiv.symm Universal.point).point = _
rw [← map_zsmul, eq]
have := ψᵤ_ne_zero hn
refine Quotient.sound ⟨.mk0 _ (inv_ne_zero this), ?_⟩
simp_rw [Units.smul_def, Jacobian.smul_fin3']
ext i; fin_cases i <;> field_simp [Affine.smulX, Affine.smulY, this]
lemma dblZ_smulPoly : dblZ curvePoly (smulPoly n) = curve.ψ (2 * n) := by
simp_rw [dblZ, smulPoly, negY, fin3_def_ext, curvePoly, baseChange, map, coe_algebraMap_eq_CC]
rw [← ψc_spec _ n]; congr; convert curve.ω_spec n using 1; ring
lemma nonsingular_smulField : Nonsingular curveField (smulField n) := by
simpa only [zsmul_eq_divisionPolynomial] using (n • Jacobian.point).nonsingular
lemma dblXYZ_smulField : dblXYZ curveField (smulField n) = smulField (2 * n) := by
obtain rfl | hn := eq_or_ne n 0
· norm_num [dblXYZ, dblX, dblY, dblZ, negY, dblY', smulField, smulPoly, curveField, ← fin3_def]
erw [← equiv_iff_eq_of_Z_eq _ (ψᵤ_ne_zero <| mul_ne_zero two_ne_zero hn),
← Quotient.eq, ← zsmul_eq_divisionPolynomial, mul_zsmul,
Point.two_smul_point zsmul_eq_divisionPolynomial]
· rfl
simp only [smulField, smulPoly, fin3_def_ext, Function.comp, ← dblZ_smulPoly, ← map_dblZ]; rfl
lemma dblXYZ_smulRing : dblXYZ curveRing (smulRing n) = smulRing (2 * n) :=
(IsFractionRing.injective _ Universal.Field).comp_left <| by
simp_rw [← map_dblXYZ]; exact dblXYZ_smulField
lemma addZ_smulPoly : addZ (smulPoly m) (smulPoly n) = curve.ψ (n + m) * curve.ψ (n - m) := by
simp_rw [addZ, smulPoly, φ]; convert (curve.isEllSequence_ψ n m 1).symm using 1
· simp only [fin3_def_ext]; ring
· rw [ψ_one]; ring
lemma ω_neg_eq_neg_negY : curve.ω (-n) = -negY curvePoly (smulPoly n) := by
simp_rw [ω_neg, negY, smulPoly, fin3_def_ext, curvePoly, baseChange, map, coe_algebraMap_eq_CC]
ring
lemma smulPoly_neg : smulPoly (-n) = (-1 : Poly) • neg curvePoly (smulPoly n) := by
simp [smulPoly, ω_neg_eq_neg_negY, neg, smul_fin3', (show Odd 3 by decide).neg_pow]
lemma smulRing_neg : smulRing (-n) = (-1 : Universal.Ring) • neg curveRing (smulRing n) := by
simp_rw [smulRing, smulPoly_neg, Jacobian.map_smul, ← Jacobian.map_neg, map_neg, map_one]; rfl
lemma smulField_neg : smulField (-n) = (-1 : Universal.Field) • neg curveField (smulField n) := by
simp_rw [smulField, smulPoly_neg, Jacobian.map_smul, ← Jacobian.map_neg, map_neg, map_one]; rfl
lemma smulPoly_zero : smulPoly 0 = ![1, 1, 0] := by simp [smulPoly]
lemma smulField_zero : smulField 0 = ![1, 1, 0] := by simp [smulField, smulPoly_zero, comp_fin3]
lemma addXYZ_smulField :
addXYZ curveField (smulField m) (smulField n) =
polyToField (curve.ψ (n - m)) • smulField (n + m) := by
obtain rfl | h := eq_or_ne m n
· rw [sub_self, ψ_zero, map_zero, smul_fin3,
addXYZ_self nonsingular_smulField.1, zero_pow two_ne_zero, zero_pow (by decide)]
simp_rw [zero_mul]
obtain rfl | ne_neg := eq_or_ne n (-m)
· rw [← one_smul (M := Universal.Field) (smulField m), smulField_neg, add_left_neg,
addXYZ_smul, one_mul, neg_one_sq (R := Universal.Field), addXYZ_neg nonsingular_smulField.1,
one_smul, ← neg_add', ← two_mul, ψ_neg, map_neg, ← dblZ_smulPoly, ← map_dblZ, smulField_zero]
rfl
erw [← equiv_iff_eq_of_Z_eq, ← Quotient.eq, ← Units.smul_mk0 (ψᵤ_ne_zero <|
sub_ne_zero_of_ne h.symm), smul_eq, ← zsmul_eq_divisionPolynomial, add_comm, add_zsmul,
Point.add_point_of_ne zsmul_eq_divisionPolynomial zsmul_eq_divisionPolynomial (smul_point_ne h)]
· rfl
· conv_rhs => rw [smulField, comp_fin3, smul_fin3', (fin3_def_ext _ _ _).2.2, mul_comm]
simp_rw [addXYZ, fin3_def_ext, ← map_mul, ← addZ_smulPoly, ← map_addZ]
· apply mul_ne_zero <;> apply ψᵤ_ne_zero <;> omega
lemma addXYZ_smulRing :
addXYZ curveRing (smulRing m) (smulRing n) =
AdjoinRoot.mk curve.polynomial (curve.ψ (n - m)) • smulRing (n + m) :=
(IsFractionRing.injective Universal.Ring Universal.Field).comp_left <| by
simp_rw [← map_addXYZ, Jacobian.map_smul]; exact addXYZ_smulField
lemma addXYZ_smulField₁ :
addXYZ curveField (smulField n) (smulField (n + 1)) = smulField (2 * n + 1) := by
rw [addXYZ_smulField, add_sub_cancel_left, ψ_one, map_one, one_smul, two_mul, add_comm, add_assoc]
lemma addXYZ_smulRing₁ :
addXYZ curveRing (smulRing n) (smulRing (n + 1)) = smulRing (2 * n + 1) := by
rw [addXYZ_smulRing, add_sub_cancel_left, ψ_one, map_one, one_smul, two_mul, add_comm, add_assoc]
end Jacobian
end Universal
variable (x y) in
/-- The evaluation of the division polynomials at a point `(x,y)`, equal to the
Jacobian coordinates of `n • (x,y)` (see `smul_eq_divisionPolynomial_eval`). -/
abbrev smulEval (n : ℤ) : Fin 3 → R := evalEval x y ∘ ![W.φ n, W.ω n, W.ψ n]
variable {W} (eqn : W.toAffine.Equation x y)
open Universal.Jacobian
lemma ringEval_comp_smulRing (n : ℤ) : ringEval eqn ∘ smulRing n = smulEval W x y n := by
conv_rhs => rw [smulEval, ← W.map_specialize, map_φ, map_ω, map_ψ, ← coe_mapRingHom,
← Jacobian.comp_fin3, ← Function.comp.assoc, ← smulPoly, ← coe_evalEvalRingHom]
simp_rw [smulRing, ← Function.comp.assoc, ← RingHom.coe_comp, ringEval_comp_mk]
congr!; ext <;> simp [polyEval]
lemma ringEval_ψ (n : ℤ) :
ringEval eqn (AdjoinRoot.mk _ <| Universal.curve.ψ n) = evalEval x y (W.ψ n) :=
congr_fun (ringEval_comp_smulRing eqn n) 2
lemma curveRing_map_ringEval : curveRing.map (ringEval eqn) = W := by
rw [curveRing, baseChange, map_map, ringEval_comp_eq_specialize, map_specialize]
open Jacobian
lemma dblXYZ_smul (n : ℤ) : dblXYZ W (smulEval W x y n) = smulEval W x y (2 * n) := by
simp_rw [← ringEval_comp_smulRing eqn, ← dblXYZ_smulRing, ← map_dblXYZ, curveRing_map_ringEval]
lemma addXYZ_smul (m n : ℤ) :
addXYZ W (smulEval W x y m) (smulEval W x y n) =
evalEval x y (W.ψ (n - m)) • smulEval W x y (n + m) := by
simp_rw [← ringEval_comp_smulRing eqn, ← ringEval_ψ eqn]
rw [← Jacobian.map_smul, ← addXYZ_smulRing, ← map_addXYZ, curveRing_map_ringEval]
lemma addXYZ_smul₁ (n : ℤ) :
addXYZ W (smulEval W x y n) (smulEval W x y (n + 1)) =
smulEval W x y (2 * n + 1) := by
simp_rw [← ringEval_comp_smulRing eqn, ← addXYZ_smulRing₁, ← map_addXYZ, curveRing_map_ringEval]
variable {F : Type*} [Field F] (W : WeierstrassCurve F)
open Universal
-- move this
local macro "eval_simp" : tactic =>
`(tactic| simp only [eval_C, eval_X, eval_neg, eval_add, eval_sub, eval_mul, eval_pow])
theorem smul_eq_divisionPolynomial_eval {x y : F} (h : Affine.Nonsingular W x y) (n : ℤ) :
(n • Point.fromAffine (Affine.Point.some h)).point = ⟦smulEval W x y n⟧ := by
induction n using Int.negInduction with
| nat n =>
refine n.strong_induction_on fun n ih ↦ ?_
obtain _|_|n := n
· rw [Nat.cast_zero, zero_smul, smulEval, comp_fin3]; congrm(⟦?_⟧); simp [evalEval]
· rw [Nat.cast_one, one_smul, smulEval, comp_fin3]; congrm(⟦?_⟧); simp [evalEval]
obtain ⟨n, rfl|rfl⟩ := n.even_or_odd'
· rw [add_assoc, ← two_mul, ← left_distrib, Nat.cast_mul, mul_smul, natCast_zsmul,
Point.two_smul_point (ih _ <| by omega), dblXYZ_smul h.1]; rfl
· rw [show 2 * n + 1 + 1 + 1 = (n + 1) + (n + 1 + 1) by omega, Nat.cast_add, add_smul,
Point.add_point_of_ne (ih _ <| by omega) (ih _ <| by omega), Nat.cast_add (n + 1),
Nat.cast_one, addXYZ_smul₁ h.1, ← add_assoc, two_mul]
simp_rw [Nat.cast_add]
rw [ne_comm, ← sub_ne_zero, ← sub_smul, add_sub_cancel_left, Nat.cast_one, one_smul]
apply Point.fromAffine_ne_zero
| neg n hn =>
simp_rw [neg_smul, Point.neg_point, hn, eq_comm]
refine Quotient.sound ⟨-1, ?_⟩
simp_rw [← ringEval_comp_smulRing h.1, smulRing_neg, Jacobian.map_smul, ← Jacobian.map_neg,
curveRing_map_ringEval, map_neg, map_one]
rfl
end
end WeierstrassCurve