-
Notifications
You must be signed in to change notification settings - Fork 384
/
Copy pathBasic.lean
237 lines (186 loc) · 9.3 KB
/
Basic.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/-
Copyright (c) 2022 Adam Topaz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Adam Topaz
-/
import Mathlib.LinearAlgebra.FiniteDimensional
#align_import linear_algebra.projective_space.basic from "leanprover-community/mathlib"@"c4658a649d216f57e99621708b09dcb3dcccbd23"
/-!
# Projective Spaces
This file contains the definition of the projectivization of a vector space over a field,
as well as the bijection between said projectivization and the collection of all one
dimensional subspaces of the vector space.
## Notation
`ℙ K V` is localized notation for `Projectivization K V`, the projectivization of a `K`-vector
space `V`.
## Constructing terms of `ℙ K V`.
We have three ways to construct terms of `ℙ K V`:
- `Projectivization.mk K v hv` where `v : V` and `hv : v ≠ 0`.
- `Projectivization.mk' K v` where `v : { w : V // w ≠ 0 }`.
- `Projectivization.mk'' H h` where `H : Submodule K V` and `h : finrank H = 1`.
## Other definitions
- For `v : ℙ K V`, `v.submodule` gives the corresponding submodule of `V`.
- `Projectivization.equivSubmodule` is the equivalence between `ℙ K V`
and `{ H : Submodule K V // finrank H = 1 }`.
- For `v : ℙ K V`, `v.rep : V` is a representative of `v`.
-/
variable (K V : Type*) [DivisionRing K] [AddCommGroup V] [Module K V]
/-- The setoid whose quotient is the projectivization of `V`. -/
def projectivizationSetoid : Setoid { v : V // v ≠ 0 } :=
(MulAction.orbitRel Kˣ V).comap (↑)
#align projectivization_setoid projectivizationSetoid
/-- The projectivization of the `K`-vector space `V`.
The notation `ℙ K V` is preferred. -/
def Projectivization := Quotient (projectivizationSetoid K V)
#align projectivization Projectivization
/-- We define notations `ℙ K V` for the projectivization of the `K`-vector space `V`. -/
scoped[LinearAlgebra.Projectivization] notation "ℙ" => Projectivization
namespace Projectivization
open scoped LinearAlgebra.Projectivization
variable {V}
/-- Construct an element of the projectivization from a nonzero vector. -/
def mk (v : V) (hv : v ≠ 0) : ℙ K V :=
Quotient.mk'' ⟨v, hv⟩
#align projectivization.mk Projectivization.mk
/-- A variant of `Projectivization.mk` in terms of a subtype. `mk` is preferred. -/
def mk' (v : { v : V // v ≠ 0 }) : ℙ K V :=
Quotient.mk'' v
#align projectivization.mk' Projectivization.mk'
@[simp]
theorem mk'_eq_mk (v : { v : V // v ≠ 0 }) : mk' K v = mk K ↑v v.2 := rfl
#align projectivization.mk'_eq_mk Projectivization.mk'_eq_mk
instance [Nontrivial V] : Nonempty (ℙ K V) :=
let ⟨v, hv⟩ := exists_ne (0 : V)
⟨mk K v hv⟩
variable {K}
/-- Choose a representative of `v : Projectivization K V` in `V`. -/
protected noncomputable def rep (v : ℙ K V) : V :=
v.out'
#align projectivization.rep Projectivization.rep
theorem rep_nonzero (v : ℙ K V) : v.rep ≠ 0 :=
v.out'.2
#align projectivization.rep_nonzero Projectivization.rep_nonzero
@[simp]
theorem mk_rep (v : ℙ K V) : mk K v.rep v.rep_nonzero = v := Quotient.out_eq' _
#align projectivization.mk_rep Projectivization.mk_rep
open FiniteDimensional
/-- Consider an element of the projectivization as a submodule of `V`. -/
protected def submodule (v : ℙ K V) : Submodule K V :=
(Quotient.liftOn' v fun v => K ∙ (v : V)) <| by
rintro ⟨a, ha⟩ ⟨b, hb⟩ ⟨x, rfl : x • b = a⟩
exact Submodule.span_singleton_group_smul_eq _ x _
#align projectivization.submodule Projectivization.submodule
variable (K)
theorem mk_eq_mk_iff (v w : V) (hv : v ≠ 0) (hw : w ≠ 0) :
mk K v hv = mk K w hw ↔ ∃ a : Kˣ, a • w = v :=
Quotient.eq''
#align projectivization.mk_eq_mk_iff Projectivization.mk_eq_mk_iff
/-- Two nonzero vectors go to the same point in projective space if and only if one is
a scalar multiple of the other. -/
theorem mk_eq_mk_iff' (v w : V) (hv : v ≠ 0) (hw : w ≠ 0) :
mk K v hv = mk K w hw ↔ ∃ a : K, a • w = v := by
rw [mk_eq_mk_iff K v w hv hw]
constructor
· rintro ⟨a, ha⟩
exact ⟨a, ha⟩
· rintro ⟨a, ha⟩
refine ⟨Units.mk0 a fun c => hv.symm ?_, ha⟩
rwa [c, zero_smul] at ha
#align projectivization.mk_eq_mk_iff' Projectivization.mk_eq_mk_iff'
theorem exists_smul_eq_mk_rep (v : V) (hv : v ≠ 0) : ∃ a : Kˣ, a • v = (mk K v hv).rep :=
(mk_eq_mk_iff K _ _ (rep_nonzero _) hv).1 (mk_rep _)
#align projectivization.exists_smul_eq_mk_rep Projectivization.exists_smul_eq_mk_rep
variable {K}
/-- An induction principle for `Projectivization`. Use as `induction v`. -/
@[elab_as_elim, cases_eliminator, induction_eliminator]
theorem ind {P : ℙ K V → Prop} (h : ∀ (v : V) (h : v ≠ 0), P (mk K v h)) : ∀ p, P p :=
Quotient.ind' <| Subtype.rec <| h
#align projectivization.ind Projectivization.ind
@[simp]
theorem submodule_mk (v : V) (hv : v ≠ 0) : (mk K v hv).submodule = K ∙ v :=
rfl
#align projectivization.submodule_mk Projectivization.submodule_mk
theorem submodule_eq (v : ℙ K V) : v.submodule = K ∙ v.rep := by
conv_lhs => rw [← v.mk_rep]
rfl
#align projectivization.submodule_eq Projectivization.submodule_eq
theorem finrank_submodule (v : ℙ K V) : finrank K v.submodule = 1 := by
rw [submodule_eq]
exact finrank_span_singleton v.rep_nonzero
#align projectivization.finrank_submodule Projectivization.finrank_submodule
instance (v : ℙ K V) : FiniteDimensional K v.submodule := by
rw [← v.mk_rep]
change FiniteDimensional K (K ∙ v.rep)
infer_instance
theorem submodule_injective :
Function.Injective (Projectivization.submodule : ℙ K V → Submodule K V) := fun u v h ↦ by
induction' u using ind with u hu
induction' v using ind with v hv
rw [submodule_mk, submodule_mk, Submodule.span_singleton_eq_span_singleton] at h
exact ((mk_eq_mk_iff K v u hv hu).2 h).symm
#align projectivization.submodule_injective Projectivization.submodule_injective
variable (K V)
/-- The equivalence between the projectivization and the
collection of subspaces of dimension 1. -/
noncomputable def equivSubmodule : ℙ K V ≃ { H : Submodule K V // finrank K H = 1 } :=
(Equiv.ofInjective _ submodule_injective).trans <| .subtypeEquiv (.refl _) fun H ↦ by
refine ⟨fun ⟨v, hv⟩ ↦ hv ▸ v.finrank_submodule, fun h ↦ ?_⟩
rcases finrank_eq_one_iff'.1 h with ⟨v : H, hv₀, hv : ∀ w : H, _⟩
use mk K (v : V) (Subtype.coe_injective.ne hv₀)
rw [submodule_mk, SetLike.ext'_iff, Submodule.span_singleton_eq_range]
refine (Set.range_subset_iff.2 fun _ ↦ H.smul_mem _ v.2).antisymm fun x hx ↦ ?_
rcases hv ⟨x, hx⟩ with ⟨c, hc⟩
exact ⟨c, congr_arg Subtype.val hc⟩
#align projectivization.equiv_submodule Projectivization.equivSubmodule
variable {K V}
/-- Construct an element of the projectivization from a subspace of dimension 1. -/
noncomputable def mk'' (H : Submodule K V) (h : finrank K H = 1) : ℙ K V :=
(equivSubmodule K V).symm ⟨H, h⟩
#align projectivization.mk'' Projectivization.mk''
@[simp]
theorem submodule_mk'' (H : Submodule K V) (h : finrank K H = 1) : (mk'' H h).submodule = H :=
congr_arg Subtype.val <| (equivSubmodule K V).apply_symm_apply ⟨H, h⟩
#align projectivization.submodule_mk'' Projectivization.submodule_mk''
@[simp]
theorem mk''_submodule (v : ℙ K V) : mk'' v.submodule v.finrank_submodule = v :=
(equivSubmodule K V).symm_apply_apply v
#align projectivization.mk''_submodule Projectivization.mk''_submodule
section Map
variable {L W : Type*} [DivisionRing L] [AddCommGroup W] [Module L W]
/-- An injective semilinear map of vector spaces induces a map on projective spaces. -/
def map {σ : K →+* L} (f : V →ₛₗ[σ] W) (hf : Function.Injective f) : ℙ K V → ℙ L W :=
Quotient.map' (fun v => ⟨f v, fun c => v.2 (hf (by simp [c]))⟩)
(by
rintro ⟨u, hu⟩ ⟨v, hv⟩ ⟨a, ha⟩
use Units.map σ.toMonoidHom a
dsimp at ha ⊢
erw [← f.map_smulₛₗ, ha])
#align projectivization.map Projectivization.map
theorem map_mk {σ : K →+* L} (f : V →ₛₗ[σ] W) (hf : Function.Injective f) (v : V) (hv : v ≠ 0) :
map f hf (mk K v hv) = mk L (f v) (map_zero f ▸ hf.ne hv) :=
rfl
/-- Mapping with respect to a semilinear map over an isomorphism of fields yields
an injective map on projective spaces. -/
theorem map_injective {σ : K →+* L} {τ : L →+* K} [RingHomInvPair σ τ] (f : V →ₛₗ[σ] W)
(hf : Function.Injective f) : Function.Injective (map f hf) := fun u v h ↦ by
induction' u using ind with u hu; induction' v using ind with v hv
simp only [map_mk, mk_eq_mk_iff'] at h ⊢
rcases h with ⟨a, ha⟩
refine ⟨τ a, hf ?_⟩
rwa [f.map_smulₛₗ, RingHomInvPair.comp_apply_eq₂]
#align projectivization.map_injective Projectivization.map_injective
@[simp]
theorem map_id : map (LinearMap.id : V →ₗ[K] V) (LinearEquiv.refl K V).injective = id := by
ext ⟨v⟩
rfl
#align projectivization.map_id Projectivization.map_id
-- Porting note: removed `@[simp]` because of unusable `hg.comp hf` in the LHS
theorem map_comp {F U : Type*} [Field F] [AddCommGroup U] [Module F U] {σ : K →+* L} {τ : L →+* F}
{γ : K →+* F} [RingHomCompTriple σ τ γ] (f : V →ₛₗ[σ] W) (hf : Function.Injective f)
(g : W →ₛₗ[τ] U) (hg : Function.Injective g) :
map (g.comp f) (hg.comp hf) = map g hg ∘ map f hf := by
ext ⟨v⟩
rfl
#align projectivization.map_comp Projectivization.map_comp
end Map
end Projectivization