-
Notifications
You must be signed in to change notification settings - Fork 384
/
Copy pathNaturalOps.lean
833 lines (672 loc) · 33.3 KB
/
NaturalOps.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
/-
Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Violeta Hernández Palacios
-/
import Mathlib.SetTheory.Ordinal.Arithmetic
import Mathlib.Tactic.Abel
#align_import set_theory.ordinal.natural_ops from "leanprover-community/mathlib"@"31b269b60935483943542d547a6dd83a66b37dc7"
/-!
# Natural operations on ordinals
The goal of this file is to define natural addition and multiplication on ordinals, also known as
the Hessenberg sum and product, and provide a basic API. The natural addition of two ordinals
`a ♯ b` is recursively defined as the least ordinal greater than `a' ♯ b` and `a ♯ b'` for `a' < a`
and `b' < b`. The natural multiplication `a ⨳ b` is likewise recursively defined as the least
ordinal such that `a ⨳ b ♯ a' ⨳ b'` is greater than `a' ⨳ b ♯ a ⨳ b'` for any `a' < a` and
`b' < b`.
These operations form a rich algebraic structure: they're commutative, associative, preserve order,
have the usual `0` and `1` from ordinals, and distribute over one another.
Moreover, these operations are the addition and multiplication of ordinals when viewed as
combinatorial `Game`s. This makes them particularly useful for game theory.
Finally, both operations admit simple, intuitive descriptions in terms of the Cantor normal form.
The natural addition of two ordinals corresponds to adding their Cantor normal forms as if they were
polynomials in `ω`. Likewise, their natural multiplication corresponds to multiplying the Cantor
normal forms as polynomials.
# Implementation notes
Given the rich algebraic structure of these two operations, we choose to create a type synonym
`NatOrdinal`, where we provide the appropriate instances. However, to avoid casting back and forth
between both types, we attempt to prove and state most results on `Ordinal`.
# Todo
- Prove the characterizations of natural addition and multiplication in terms of the Cantor normal
form.
-/
set_option autoImplicit true
universe u v
open Function Order
noncomputable section
/-! ### Basic casts between `Ordinal` and `NatOrdinal` -/
/-- A type synonym for ordinals with natural addition and multiplication. -/
def NatOrdinal : Type _ :=
-- Porting note: used to derive LinearOrder & SuccOrder but need to manually define
Ordinal deriving Zero, Inhabited, One, WellFoundedRelation
#align nat_ordinal NatOrdinal
instance NatOrdinal.linearOrder : LinearOrder NatOrdinal := {Ordinal.linearOrder with}
instance NatOrdinal.succOrder : SuccOrder NatOrdinal := {Ordinal.succOrder with}
/-- The identity function between `Ordinal` and `NatOrdinal`. -/
@[match_pattern]
def Ordinal.toNatOrdinal : Ordinal ≃o NatOrdinal :=
OrderIso.refl _
#align ordinal.to_nat_ordinal Ordinal.toNatOrdinal
/-- The identity function between `NatOrdinal` and `Ordinal`. -/
@[match_pattern]
def NatOrdinal.toOrdinal : NatOrdinal ≃o Ordinal :=
OrderIso.refl _
#align nat_ordinal.to_ordinal NatOrdinal.toOrdinal
namespace NatOrdinal
open Ordinal
@[simp]
theorem toOrdinal_symm_eq : NatOrdinal.toOrdinal.symm = Ordinal.toNatOrdinal :=
rfl
#align nat_ordinal.to_ordinal_symm_eq NatOrdinal.toOrdinal_symm_eq
-- Porting note: used to use dot notation, but doesn't work in Lean 4 with `OrderIso`
@[simp]
theorem toOrdinal_toNatOrdinal (a : NatOrdinal) :
Ordinal.toNatOrdinal (NatOrdinal.toOrdinal a) = a := rfl
#align nat_ordinal.to_ordinal_to_nat_ordinal NatOrdinal.toOrdinal_toNatOrdinal
theorem lt_wf : @WellFounded NatOrdinal (· < ·) :=
Ordinal.lt_wf
#align nat_ordinal.lt_wf NatOrdinal.lt_wf
instance : WellFoundedLT NatOrdinal :=
Ordinal.wellFoundedLT
instance : IsWellOrder NatOrdinal (· < ·) :=
Ordinal.isWellOrder
@[simp]
theorem toOrdinal_zero : toOrdinal 0 = 0 :=
rfl
#align nat_ordinal.to_ordinal_zero NatOrdinal.toOrdinal_zero
@[simp]
theorem toOrdinal_one : toOrdinal 1 = 1 :=
rfl
#align nat_ordinal.to_ordinal_one NatOrdinal.toOrdinal_one
@[simp]
theorem toOrdinal_eq_zero (a) : toOrdinal a = 0 ↔ a = 0 :=
Iff.rfl
#align nat_ordinal.to_ordinal_eq_zero NatOrdinal.toOrdinal_eq_zero
@[simp]
theorem toOrdinal_eq_one (a) : toOrdinal a = 1 ↔ a = 1 :=
Iff.rfl
#align nat_ordinal.to_ordinal_eq_one NatOrdinal.toOrdinal_eq_one
@[simp]
theorem toOrdinal_max : toOrdinal (max a b) = max (toOrdinal a) (toOrdinal b) :=
rfl
#align nat_ordinal.to_ordinal_max NatOrdinal.toOrdinal_max
@[simp]
theorem toOrdinal_min : toOrdinal (min a b)= min (toOrdinal a) (toOrdinal b) :=
rfl
#align nat_ordinal.to_ordinal_min NatOrdinal.toOrdinal_min
theorem succ_def (a : NatOrdinal) : succ a = toNatOrdinal (toOrdinal a + 1) :=
rfl
#align nat_ordinal.succ_def NatOrdinal.succ_def
/-- A recursor for `NatOrdinal`. Use as `induction x`. -/
@[elab_as_elim, cases_eliminator, induction_eliminator]
protected def rec {β : NatOrdinal → Sort*} (h : ∀ a, β (toNatOrdinal a)) : ∀ a, β a := fun a =>
h (toOrdinal a)
#align nat_ordinal.rec NatOrdinal.rec
/-- `Ordinal.induction` but for `NatOrdinal`. -/
theorem induction {p : NatOrdinal → Prop} : ∀ (i) (_ : ∀ j, (∀ k, k < j → p k) → p j), p i :=
Ordinal.induction
#align nat_ordinal.induction NatOrdinal.induction
end NatOrdinal
namespace Ordinal
variable {a b c : Ordinal.{u}}
@[simp]
theorem toNatOrdinal_symm_eq : toNatOrdinal.symm = NatOrdinal.toOrdinal :=
rfl
#align ordinal.to_nat_ordinal_symm_eq Ordinal.toNatOrdinal_symm_eq
@[simp]
theorem toNatOrdinal_toOrdinal (a : Ordinal) : NatOrdinal.toOrdinal (toNatOrdinal a) = a :=
rfl
#align ordinal.to_nat_ordinal_to_ordinal Ordinal.toNatOrdinal_toOrdinal
@[simp]
theorem toNatOrdinal_zero : toNatOrdinal 0 = 0 :=
rfl
#align ordinal.to_nat_ordinal_zero Ordinal.toNatOrdinal_zero
@[simp]
theorem toNatOrdinal_one : toNatOrdinal 1 = 1 :=
rfl
#align ordinal.to_nat_ordinal_one Ordinal.toNatOrdinal_one
@[simp]
theorem toNatOrdinal_eq_zero (a) : toNatOrdinal a = 0 ↔ a = 0 :=
Iff.rfl
#align ordinal.to_nat_ordinal_eq_zero Ordinal.toNatOrdinal_eq_zero
@[simp]
theorem toNatOrdinal_eq_one (a) : toNatOrdinal a = 1 ↔ a = 1 :=
Iff.rfl
#align ordinal.to_nat_ordinal_eq_one Ordinal.toNatOrdinal_eq_one
@[simp]
theorem toNatOrdinal_max (a b : Ordinal) :
toNatOrdinal (max a b) = max (toNatOrdinal a) (toNatOrdinal b) :=
rfl
#align ordinal.to_nat_ordinal_max Ordinal.toNatOrdinal_max
@[simp]
theorem toNatOrdinal_min (a b : Ordinal) :
toNatOrdinal (linearOrder.min a b) = linearOrder.min (toNatOrdinal a) (toNatOrdinal b) :=
rfl
#align ordinal.to_nat_ordinal_min Ordinal.toNatOrdinal_min
/-! We place the definitions of `nadd` and `nmul` before actually developing their API, as this
guarantees we only need to open the `NaturalOps` locale once. -/
/-- Natural addition on ordinals `a ♯ b`, also known as the Hessenberg sum, is recursively defined
as the least ordinal greater than `a' ♯ b` and `a ♯ b'` for all `a' < a` and `b' < b`. In contrast
to normal ordinal addition, it is commutative.
Natural addition can equivalently be characterized as the ordinal resulting from adding up
corresponding coefficients in the Cantor normal forms of `a` and `b`. -/
noncomputable def nadd : Ordinal → Ordinal → Ordinal
| a, b =>
max (blsub.{u, u} a fun a' _ => nadd a' b) (blsub.{u, u} b fun b' _ => nadd a b')
termination_by o₁ o₂ => (o₁, o₂)
#align ordinal.nadd Ordinal.nadd
@[inherit_doc]
scoped[NaturalOps] infixl:65 " ♯ " => Ordinal.nadd
open NaturalOps
/-- Natural multiplication on ordinals `a ⨳ b`, also known as the Hessenberg product, is recursively
defined as the least ordinal such that `a ⨳ b + a' ⨳ b'` is greater than `a' ⨳ b + a ⨳ b'` for all
`a' < a` and `b < b'`. In contrast to normal ordinal multiplication, it is commutative and
distributive (over natural addition).
Natural multiplication can equivalently be characterized as the ordinal resulting from multiplying
the Cantor normal forms of `a` and `b` as if they were polynomials in `ω`. Addition of exponents is
done via natural addition. -/
noncomputable def nmul : Ordinal.{u} → Ordinal.{u} → Ordinal.{u}
| a, b => sInf {c | ∀ a' < a, ∀ b' < b, nmul a' b ♯ nmul a b' < c ♯ nmul a' b'}
termination_by a b => (a, b)
#align ordinal.nmul Ordinal.nmul
@[inherit_doc]
scoped[NaturalOps] infixl:70 " ⨳ " => Ordinal.nmul
/-! ### Natural addition -/
theorem nadd_def (a b : Ordinal) :
a ♯ b = max (blsub.{u, u} a fun a' _ => a' ♯ b) (blsub.{u, u} b fun b' _ => a ♯ b') := by
rw [nadd]
#align ordinal.nadd_def Ordinal.nadd_def
theorem lt_nadd_iff : a < b ♯ c ↔ (∃ b' < b, a ≤ b' ♯ c) ∨ ∃ c' < c, a ≤ b ♯ c' := by
rw [nadd_def]
simp [lt_blsub_iff]
#align ordinal.lt_nadd_iff Ordinal.lt_nadd_iff
theorem nadd_le_iff : b ♯ c ≤ a ↔ (∀ b' < b, b' ♯ c < a) ∧ ∀ c' < c, b ♯ c' < a := by
rw [nadd_def]
simp [blsub_le_iff]
#align ordinal.nadd_le_iff Ordinal.nadd_le_iff
theorem nadd_lt_nadd_left (h : b < c) (a) : a ♯ b < a ♯ c :=
lt_nadd_iff.2 (Or.inr ⟨b, h, le_rfl⟩)
#align ordinal.nadd_lt_nadd_left Ordinal.nadd_lt_nadd_left
theorem nadd_lt_nadd_right (h : b < c) (a) : b ♯ a < c ♯ a :=
lt_nadd_iff.2 (Or.inl ⟨b, h, le_rfl⟩)
#align ordinal.nadd_lt_nadd_right Ordinal.nadd_lt_nadd_right
theorem nadd_le_nadd_left (h : b ≤ c) (a) : a ♯ b ≤ a ♯ c := by
rcases lt_or_eq_of_le h with (h | rfl)
· exact (nadd_lt_nadd_left h a).le
· exact le_rfl
#align ordinal.nadd_le_nadd_left Ordinal.nadd_le_nadd_left
theorem nadd_le_nadd_right (h : b ≤ c) (a) : b ♯ a ≤ c ♯ a := by
rcases lt_or_eq_of_le h with (h | rfl)
· exact (nadd_lt_nadd_right h a).le
· exact le_rfl
#align ordinal.nadd_le_nadd_right Ordinal.nadd_le_nadd_right
variable (a b)
theorem nadd_comm : ∀ a b, a ♯ b = b ♯ a
| a, b => by
rw [nadd_def, nadd_def, max_comm]
congr <;> ext <;> apply nadd_comm
termination_by a b => (a,b)
#align ordinal.nadd_comm Ordinal.nadd_comm
theorem blsub_nadd_of_mono {f : ∀ c < a ♯ b, Ordinal.{max u v}}
(hf : ∀ {i j} (hi hj), i ≤ j → f i hi ≤ f j hj) :
-- Porting note: needed to add universe hint blsub.{u,v} in the line below
blsub.{u,v} _ f =
max (blsub.{u, v} a fun a' ha' => f (a' ♯ b) <| nadd_lt_nadd_right ha' b)
(blsub.{u, v} b fun b' hb' => f (a ♯ b') <| nadd_lt_nadd_left hb' a) := by
apply (blsub_le_iff.2 fun i h => _).antisymm (max_le _ _)
· intro i h
rcases lt_nadd_iff.1 h with (⟨a', ha', hi⟩ | ⟨b', hb', hi⟩)
· exact lt_max_of_lt_left ((hf h (nadd_lt_nadd_right ha' b) hi).trans_lt (lt_blsub _ _ ha'))
· exact lt_max_of_lt_right ((hf h (nadd_lt_nadd_left hb' a) hi).trans_lt (lt_blsub _ _ hb'))
all_goals
apply blsub_le_of_brange_subset.{u, u, v}
rintro c ⟨d, hd, rfl⟩
apply mem_brange_self
#align ordinal.blsub_nadd_of_mono Ordinal.blsub_nadd_of_mono
theorem nadd_assoc (a b c) : a ♯ b ♯ c = a ♯ (b ♯ c) := by
rw [nadd_def a (b ♯ c), nadd_def, blsub_nadd_of_mono, blsub_nadd_of_mono, max_assoc]
· congr <;> ext <;> apply nadd_assoc
· exact fun _ _ h => nadd_le_nadd_left h a
· exact fun _ _ h => nadd_le_nadd_right h c
termination_by (a, b, c)
#align ordinal.nadd_assoc Ordinal.nadd_assoc
@[simp]
theorem nadd_zero : a ♯ 0 = a := by
induction' a using Ordinal.induction with a IH
rw [nadd_def, blsub_zero, max_zero_right]
convert blsub_id a
rename_i hb
exact IH _ hb
#align ordinal.nadd_zero Ordinal.nadd_zero
@[simp]
theorem zero_nadd : 0 ♯ a = a := by rw [nadd_comm, nadd_zero]
#align ordinal.zero_nadd Ordinal.zero_nadd
@[simp]
theorem nadd_one : a ♯ 1 = succ a := by
induction' a using Ordinal.induction with a IH
rw [nadd_def, blsub_one, nadd_zero, max_eq_right_iff, blsub_le_iff]
intro i hi
rwa [IH i hi, succ_lt_succ_iff]
#align ordinal.nadd_one Ordinal.nadd_one
@[simp]
theorem one_nadd : 1 ♯ a = succ a := by rw [nadd_comm, nadd_one]
#align ordinal.one_nadd Ordinal.one_nadd
theorem nadd_succ : a ♯ succ b = succ (a ♯ b) := by rw [← nadd_one (a ♯ b), nadd_assoc, nadd_one]
#align ordinal.nadd_succ Ordinal.nadd_succ
theorem succ_nadd : succ a ♯ b = succ (a ♯ b) := by rw [← one_nadd (a ♯ b), ← nadd_assoc, one_nadd]
#align ordinal.succ_nadd Ordinal.succ_nadd
@[simp]
theorem nadd_nat (n : ℕ) : a ♯ n = a + n := by
induction' n with n hn
· simp
· rw [Nat.cast_succ, add_one_eq_succ, nadd_succ, add_succ, hn]
#align ordinal.nadd_nat Ordinal.nadd_nat
@[simp]
theorem nat_nadd (n : ℕ) : ↑n ♯ a = a + n := by rw [nadd_comm, nadd_nat]
#align ordinal.nat_nadd Ordinal.nat_nadd
theorem add_le_nadd : a + b ≤ a ♯ b := by
induction b using limitRecOn with
| H₁ => simp
| H₂ c h =>
rwa [add_succ, nadd_succ, succ_le_succ_iff]
| H₃ c hc H =>
simp_rw [← IsNormal.blsub_eq.{u, u} (add_isNormal a) hc, blsub_le_iff]
exact fun i hi => (H i hi).trans_lt (nadd_lt_nadd_left hi a)
#align ordinal.add_le_nadd Ordinal.add_le_nadd
end Ordinal
namespace NatOrdinal
open Ordinal NaturalOps
instance : Add NatOrdinal :=
⟨nadd⟩
instance add_covariantClass_lt : CovariantClass NatOrdinal.{u} NatOrdinal.{u} (· + ·) (· < ·) :=
⟨fun a _ _ h => nadd_lt_nadd_left h a⟩
#align nat_ordinal.add_covariant_class_lt NatOrdinal.add_covariantClass_lt
instance add_covariantClass_le : CovariantClass NatOrdinal.{u} NatOrdinal.{u} (· + ·) (· ≤ ·) :=
⟨fun a _ _ h => nadd_le_nadd_left h a⟩
#align nat_ordinal.add_covariant_class_le NatOrdinal.add_covariantClass_le
instance add_contravariantClass_le :
ContravariantClass NatOrdinal.{u} NatOrdinal.{u} (· + ·) (· ≤ ·) :=
⟨fun a b c h => by
by_contra! h'
exact h.not_lt (add_lt_add_left h' a)⟩
#align nat_ordinal.add_contravariant_class_le NatOrdinal.add_contravariantClass_le
instance orderedCancelAddCommMonoid : OrderedCancelAddCommMonoid NatOrdinal :=
{ NatOrdinal.linearOrder with
add := (· + ·)
add_assoc := nadd_assoc
add_le_add_left := fun a b => add_le_add_left
le_of_add_le_add_left := fun a b c => le_of_add_le_add_left
zero := 0
zero_add := zero_nadd
add_zero := nadd_zero
add_comm := nadd_comm
nsmul := nsmulRec }
instance addMonoidWithOne : AddMonoidWithOne NatOrdinal :=
AddMonoidWithOne.unary
@[simp]
theorem add_one_eq_succ : ∀ a : NatOrdinal, a + 1 = succ a :=
nadd_one
#align nat_ordinal.add_one_eq_succ NatOrdinal.add_one_eq_succ
@[simp]
theorem toOrdinal_cast_nat (n : ℕ) : toOrdinal n = n := by
induction' n with n hn
· rfl
· change (toOrdinal n) ♯ 1 = n + 1
rw [hn]; exact nadd_one n
#align nat_ordinal.to_ordinal_cast_nat NatOrdinal.toOrdinal_cast_nat
end NatOrdinal
open NatOrdinal
open NaturalOps
namespace Ordinal
theorem nadd_eq_add (a b : Ordinal) : a ♯ b = toOrdinal (toNatOrdinal a + toNatOrdinal b) :=
rfl
#align ordinal.nadd_eq_add Ordinal.nadd_eq_add
@[simp]
theorem toNatOrdinal_cast_nat (n : ℕ) : toNatOrdinal n = n := by
rw [← toOrdinal_cast_nat n]
rfl
#align ordinal.to_nat_ordinal_cast_nat Ordinal.toNatOrdinal_cast_nat
theorem lt_of_nadd_lt_nadd_left : ∀ {a b c}, a ♯ b < a ♯ c → b < c :=
@lt_of_add_lt_add_left NatOrdinal _ _ _
#align ordinal.lt_of_nadd_lt_nadd_left Ordinal.lt_of_nadd_lt_nadd_left
theorem lt_of_nadd_lt_nadd_right : ∀ {a b c}, b ♯ a < c ♯ a → b < c :=
@lt_of_add_lt_add_right NatOrdinal _ _ _
#align ordinal.lt_of_nadd_lt_nadd_right Ordinal.lt_of_nadd_lt_nadd_right
theorem le_of_nadd_le_nadd_left : ∀ {a b c}, a ♯ b ≤ a ♯ c → b ≤ c :=
@le_of_add_le_add_left NatOrdinal _ _ _
#align ordinal.le_of_nadd_le_nadd_left Ordinal.le_of_nadd_le_nadd_left
theorem le_of_nadd_le_nadd_right : ∀ {a b c}, b ♯ a ≤ c ♯ a → b ≤ c :=
@le_of_add_le_add_right NatOrdinal _ _ _
#align ordinal.le_of_nadd_le_nadd_right Ordinal.le_of_nadd_le_nadd_right
theorem nadd_lt_nadd_iff_left : ∀ (a) {b c}, a ♯ b < a ♯ c ↔ b < c :=
@add_lt_add_iff_left NatOrdinal _ _ _ _
#align ordinal.nadd_lt_nadd_iff_left Ordinal.nadd_lt_nadd_iff_left
theorem nadd_lt_nadd_iff_right : ∀ (a) {b c}, b ♯ a < c ♯ a ↔ b < c :=
@add_lt_add_iff_right NatOrdinal _ _ _ _
#align ordinal.nadd_lt_nadd_iff_right Ordinal.nadd_lt_nadd_iff_right
theorem nadd_le_nadd_iff_left : ∀ (a) {b c}, a ♯ b ≤ a ♯ c ↔ b ≤ c :=
@add_le_add_iff_left NatOrdinal _ _ _ _
#align ordinal.nadd_le_nadd_iff_left Ordinal.nadd_le_nadd_iff_left
theorem nadd_le_nadd_iff_right : ∀ (a) {b c}, b ♯ a ≤ c ♯ a ↔ b ≤ c :=
@_root_.add_le_add_iff_right NatOrdinal _ _ _ _
#align ordinal.nadd_le_nadd_iff_right Ordinal.nadd_le_nadd_iff_right
theorem nadd_le_nadd : ∀ {a b c d}, a ≤ b → c ≤ d → a ♯ c ≤ b ♯ d :=
@add_le_add NatOrdinal _ _ _ _
#align ordinal.nadd_le_nadd Ordinal.nadd_le_nadd
theorem nadd_lt_nadd : ∀ {a b c d}, a < b → c < d → a ♯ c < b ♯ d :=
@add_lt_add NatOrdinal _ _ _ _
#align ordinal.nadd_lt_nadd Ordinal.nadd_lt_nadd
theorem nadd_lt_nadd_of_lt_of_le : ∀ {a b c d}, a < b → c ≤ d → a ♯ c < b ♯ d :=
@add_lt_add_of_lt_of_le NatOrdinal _ _ _ _
#align ordinal.nadd_lt_nadd_of_lt_of_le Ordinal.nadd_lt_nadd_of_lt_of_le
theorem nadd_lt_nadd_of_le_of_lt : ∀ {a b c d}, a ≤ b → c < d → a ♯ c < b ♯ d :=
@add_lt_add_of_le_of_lt NatOrdinal _ _ _ _
#align ordinal.nadd_lt_nadd_of_le_of_lt Ordinal.nadd_lt_nadd_of_le_of_lt
theorem nadd_left_cancel : ∀ {a b c}, a ♯ b = a ♯ c → b = c :=
@_root_.add_left_cancel NatOrdinal _ _
#align ordinal.nadd_left_cancel Ordinal.nadd_left_cancel
theorem nadd_right_cancel : ∀ {a b c}, a ♯ b = c ♯ b → a = c :=
@_root_.add_right_cancel NatOrdinal _ _
#align ordinal.nadd_right_cancel Ordinal.nadd_right_cancel
theorem nadd_left_cancel_iff : ∀ {a b c}, a ♯ b = a ♯ c ↔ b = c :=
@add_left_cancel_iff NatOrdinal _ _
#align ordinal.nadd_left_cancel_iff Ordinal.nadd_left_cancel_iff
theorem nadd_right_cancel_iff : ∀ {a b c}, b ♯ a = c ♯ a ↔ b = c :=
@add_right_cancel_iff NatOrdinal _ _
#align ordinal.nadd_right_cancel_iff Ordinal.nadd_right_cancel_iff
theorem le_nadd_self {a b} : a ≤ b ♯ a := by simpa using nadd_le_nadd_right (Ordinal.zero_le b) a
#align ordinal.le_nadd_self Ordinal.le_nadd_self
theorem le_nadd_left {a b c} (h : a ≤ c) : a ≤ b ♯ c :=
le_nadd_self.trans (nadd_le_nadd_left h b)
#align ordinal.le_nadd_left Ordinal.le_nadd_left
theorem le_self_nadd {a b} : a ≤ a ♯ b := by simpa using nadd_le_nadd_left (Ordinal.zero_le b) a
#align ordinal.le_self_nadd Ordinal.le_self_nadd
theorem le_nadd_right {a b c} (h : a ≤ b) : a ≤ b ♯ c :=
le_self_nadd.trans (nadd_le_nadd_right h c)
#align ordinal.le_nadd_right Ordinal.le_nadd_right
theorem nadd_left_comm : ∀ a b c, a ♯ (b ♯ c) = b ♯ (a ♯ c) :=
@add_left_comm NatOrdinal _
#align ordinal.nadd_left_comm Ordinal.nadd_left_comm
theorem nadd_right_comm : ∀ a b c, a ♯ b ♯ c = a ♯ c ♯ b :=
@add_right_comm NatOrdinal _
#align ordinal.nadd_right_comm Ordinal.nadd_right_comm
/-! ### Natural multiplication -/
variable {a b c d : Ordinal.{u}}
theorem nmul_def (a b : Ordinal) :
a ⨳ b = sInf {c | ∀ a' < a, ∀ b' < b, a' ⨳ b ♯ a ⨳ b' < c ♯ a' ⨳ b'} := by rw [nmul]
#align ordinal.nmul_def Ordinal.nmul_def
/-- The set in the definition of `nmul` is nonempty. -/
theorem nmul_nonempty (a b : Ordinal.{u}) :
{c : Ordinal.{u} | ∀ a' < a, ∀ b' < b, a' ⨳ b ♯ a ⨳ b' < c ♯ a' ⨳ b'}.Nonempty :=
⟨_, fun _ ha _ hb => (lt_blsub₂.{u, u, u} _ ha hb).trans_le le_self_nadd⟩
#align ordinal.nmul_nonempty Ordinal.nmul_nonempty
theorem nmul_nadd_lt {a' b' : Ordinal} (ha : a' < a) (hb : b' < b) :
a' ⨳ b ♯ a ⨳ b' < a ⨳ b ♯ a' ⨳ b' := by
rw [nmul_def a b]
exact csInf_mem (nmul_nonempty a b) a' ha b' hb
#align ordinal.nmul_nadd_lt Ordinal.nmul_nadd_lt
theorem nmul_nadd_le {a' b' : Ordinal} (ha : a' ≤ a) (hb : b' ≤ b) :
a' ⨳ b ♯ a ⨳ b' ≤ a ⨳ b ♯ a' ⨳ b' := by
rcases lt_or_eq_of_le ha with (ha | rfl)
· rcases lt_or_eq_of_le hb with (hb | rfl)
· exact (nmul_nadd_lt ha hb).le
· rw [nadd_comm]
· exact le_rfl
#align ordinal.nmul_nadd_le Ordinal.nmul_nadd_le
theorem lt_nmul_iff : c < a ⨳ b ↔ ∃ a' < a, ∃ b' < b, c ♯ a' ⨳ b' ≤ a' ⨳ b ♯ a ⨳ b' := by
refine ⟨fun h => ?_, ?_⟩
· rw [nmul] at h
simpa using not_mem_of_lt_csInf h ⟨0, fun _ _ => bot_le⟩
· rintro ⟨a', ha, b', hb, h⟩
have := h.trans_lt (nmul_nadd_lt ha hb)
rwa [nadd_lt_nadd_iff_right] at this
#align ordinal.lt_nmul_iff Ordinal.lt_nmul_iff
theorem nmul_le_iff : a ⨳ b ≤ c ↔ ∀ a' < a, ∀ b' < b, a' ⨳ b ♯ a ⨳ b' < c ♯ a' ⨳ b' := by
rw [← not_iff_not]; simp [lt_nmul_iff]
#align ordinal.nmul_le_iff Ordinal.nmul_le_iff
theorem nmul_comm : ∀ a b, a ⨳ b = b ⨳ a
| a, b => by
rw [nmul, nmul]
congr; ext x; constructor <;> intro H c hc d hd
-- Porting note: had to add additional arguments to `nmul_comm` here
-- for the termination checker.
· rw [nadd_comm, ← nmul_comm d b, ← nmul_comm a c, ← nmul_comm d]
exact H _ hd _ hc
· rw [nadd_comm, nmul_comm a d, nmul_comm c, nmul_comm c]
exact H _ hd _ hc
termination_by a b => (a, b)
#align ordinal.nmul_comm Ordinal.nmul_comm
@[simp]
theorem nmul_zero (a) : a ⨳ 0 = 0 := by
rw [← Ordinal.le_zero, nmul_le_iff]
exact fun _ _ a ha => (Ordinal.not_lt_zero a ha).elim
#align ordinal.nmul_zero Ordinal.nmul_zero
@[simp]
theorem zero_nmul (a) : 0 ⨳ a = 0 := by rw [nmul_comm, nmul_zero]
#align ordinal.zero_nmul Ordinal.zero_nmul
@[simp]
theorem nmul_one (a : Ordinal) : a ⨳ 1 = a := by
rw [nmul]
simp only [lt_one_iff_zero, forall_eq, nmul_zero, nadd_zero]
convert csInf_Ici (α := Ordinal)
ext b
-- Porting note: added this `simp` line, as the result from `convert`
-- is slightly different.
simp only [Set.mem_setOf_eq, Set.mem_Ici]
refine ⟨fun H => le_of_forall_lt fun c hc => ?_, fun ha c hc => ?_⟩
-- Porting note: had to add arguments to `nmul_one` in the next two lines
-- for the termination checker.
· simpa only [nmul_one c] using H c hc
· simpa only [nmul_one c] using hc.trans_le ha
termination_by a
#align ordinal.nmul_one Ordinal.nmul_one
@[simp]
theorem one_nmul (a) : 1 ⨳ a = a := by rw [nmul_comm, nmul_one]
#align ordinal.one_nmul Ordinal.one_nmul
theorem nmul_lt_nmul_of_pos_left (h₁ : a < b) (h₂ : 0 < c) : c ⨳ a < c ⨳ b :=
lt_nmul_iff.2 ⟨0, h₂, a, h₁, by simp⟩
#align ordinal.nmul_lt_nmul_of_pos_left Ordinal.nmul_lt_nmul_of_pos_left
theorem nmul_lt_nmul_of_pos_right (h₁ : a < b) (h₂ : 0 < c) : a ⨳ c < b ⨳ c :=
lt_nmul_iff.2 ⟨a, h₁, 0, h₂, by simp⟩
#align ordinal.nmul_lt_nmul_of_pos_right Ordinal.nmul_lt_nmul_of_pos_right
theorem nmul_le_nmul_of_nonneg_left (h₁ : a ≤ b) (h₂ : 0 ≤ c) : c ⨳ a ≤ c ⨳ b := by
rcases lt_or_eq_of_le h₁ with (h₁ | rfl) <;> rcases lt_or_eq_of_le h₂ with (h₂ | rfl)
· exact (nmul_lt_nmul_of_pos_left h₁ h₂).le
all_goals simp
#align ordinal.nmul_le_nmul_of_nonneg_left Ordinal.nmul_le_nmul_of_nonneg_left
theorem nmul_le_nmul_of_nonneg_right (h₁ : a ≤ b) (h₂ : 0 ≤ c) : a ⨳ c ≤ b ⨳ c := by
rw [nmul_comm, nmul_comm b]
exact nmul_le_nmul_of_nonneg_left h₁ h₂
#align ordinal.nmul_le_nmul_of_nonneg_right Ordinal.nmul_le_nmul_of_nonneg_right
theorem nmul_nadd : ∀ a b c, a ⨳ (b ♯ c) = a ⨳ b ♯ a ⨳ c
| a, b, c => by
refine le_antisymm (nmul_le_iff.2 fun a' ha d hd => ?_)
(nadd_le_iff.2 ⟨fun d hd => ?_, fun d hd => ?_⟩)
· -- Porting note: adding arguments to `nmul_nadd` for the termination checker.
rw [nmul_nadd a' b c]
rcases lt_nadd_iff.1 hd with (⟨b', hb, hd⟩ | ⟨c', hc, hd⟩)
· have := nadd_lt_nadd_of_lt_of_le (nmul_nadd_lt ha hb) (nmul_nadd_le ha.le hd)
-- Porting note: adding arguments to `nmul_nadd` for the termination checker.
rw [nmul_nadd a' b' c, nmul_nadd a b' c] at this
simp only [nadd_assoc] at this
rwa [nadd_left_comm, nadd_left_comm _ (a ⨳ b'), nadd_left_comm (a ⨳ b),
nadd_lt_nadd_iff_left, nadd_left_comm (a' ⨳ b), nadd_left_comm (a ⨳ b),
nadd_lt_nadd_iff_left, ← nadd_assoc, ← nadd_assoc] at this
· have := nadd_lt_nadd_of_le_of_lt (nmul_nadd_le ha.le hd) (nmul_nadd_lt ha hc)
-- Porting note: adding arguments to `nmul_nadd` for the termination checker.
rw [nmul_nadd a' b c', nmul_nadd a b c'] at this
simp only [nadd_assoc] at this
rwa [nadd_left_comm, nadd_comm (a ⨳ c), nadd_left_comm (a' ⨳ d), nadd_left_comm (a ⨳ c'),
nadd_left_comm (a ⨳ b), nadd_lt_nadd_iff_left, nadd_comm (a' ⨳ c), nadd_left_comm (a ⨳ d),
nadd_left_comm (a' ⨳ b), nadd_left_comm (a ⨳ b), nadd_lt_nadd_iff_left, nadd_comm (a ⨳ d),
nadd_comm (a' ⨳ d), ← nadd_assoc, ← nadd_assoc] at this
· rcases lt_nmul_iff.1 hd with ⟨a', ha, b', hb, hd⟩
have := nadd_lt_nadd_of_le_of_lt hd (nmul_nadd_lt ha (nadd_lt_nadd_right hb c))
-- Porting note: adding arguments to `nmul_nadd` for the termination checker.
rw [nmul_nadd a' b c, nmul_nadd a b' c, nmul_nadd a'] at this
simp only [nadd_assoc] at this
rwa [nadd_left_comm (a' ⨳ b'), nadd_left_comm, nadd_lt_nadd_iff_left, nadd_left_comm,
nadd_left_comm _ (a' ⨳ b'), nadd_left_comm (a ⨳ b'), nadd_lt_nadd_iff_left,
nadd_left_comm (a' ⨳ c), nadd_left_comm, nadd_lt_nadd_iff_left, nadd_left_comm,
nadd_comm _ (a' ⨳ c), nadd_lt_nadd_iff_left] at this
· rcases lt_nmul_iff.1 hd with ⟨a', ha, c', hc, hd⟩
have := nadd_lt_nadd_of_lt_of_le (nmul_nadd_lt ha (nadd_lt_nadd_left hc b)) hd
-- Porting note: adding arguments to `nmul_nadd` for the termination checker.
rw [nmul_nadd a' b c, nmul_nadd a b c', nmul_nadd a'] at this
simp only [nadd_assoc] at this
rwa [nadd_left_comm _ (a' ⨳ b), nadd_lt_nadd_iff_left, nadd_left_comm (a' ⨳ c'),
nadd_left_comm _ (a' ⨳ c), nadd_lt_nadd_iff_left, nadd_left_comm, nadd_comm (a' ⨳ c'),
nadd_left_comm _ (a ⨳ c'), nadd_lt_nadd_iff_left, nadd_comm _ (a' ⨳ c'),
nadd_comm _ (a' ⨳ c'), nadd_left_comm, nadd_lt_nadd_iff_left] at this
termination_by a b c => (a, b, c)
#align ordinal.nmul_nadd Ordinal.nmul_nadd
theorem nadd_nmul (a b c) : (a ♯ b) ⨳ c = a ⨳ c ♯ b ⨳ c := by
rw [nmul_comm, nmul_nadd, nmul_comm, nmul_comm c]
#align ordinal.nadd_nmul Ordinal.nadd_nmul
theorem nmul_nadd_lt₃ {a' b' c' : Ordinal} (ha : a' < a) (hb : b' < b) (hc : c' < c) :
a' ⨳ b ⨳ c ♯ a ⨳ b' ⨳ c ♯ a ⨳ b ⨳ c' ♯ a' ⨳ b' ⨳ c' <
a ⨳ b ⨳ c ♯ a' ⨳ b' ⨳ c ♯ a' ⨳ b ⨳ c' ♯ a ⨳ b' ⨳ c' := by
simpa only [nadd_nmul, ← nadd_assoc] using nmul_nadd_lt (nmul_nadd_lt ha hb) hc
#align ordinal.nmul_nadd_lt₃ Ordinal.nmul_nadd_lt₃
theorem nmul_nadd_le₃ {a' b' c' : Ordinal} (ha : a' ≤ a) (hb : b' ≤ b) (hc : c' ≤ c) :
a' ⨳ b ⨳ c ♯ a ⨳ b' ⨳ c ♯ a ⨳ b ⨳ c' ♯ a' ⨳ b' ⨳ c' ≤
a ⨳ b ⨳ c ♯ a' ⨳ b' ⨳ c ♯ a' ⨳ b ⨳ c' ♯ a ⨳ b' ⨳ c' := by
simpa only [nadd_nmul, ← nadd_assoc] using nmul_nadd_le (nmul_nadd_le ha hb) hc
#align ordinal.nmul_nadd_le₃ Ordinal.nmul_nadd_le₃
theorem nmul_nadd_lt₃' {a' b' c' : Ordinal} (ha : a' < a) (hb : b' < b) (hc : c' < c) :
a' ⨳ (b ⨳ c) ♯ a ⨳ (b' ⨳ c) ♯ a ⨳ (b ⨳ c') ♯ a' ⨳ (b' ⨳ c') <
a ⨳ (b ⨳ c) ♯ a' ⨳ (b' ⨳ c) ♯ a' ⨳ (b ⨳ c') ♯ a ⨳ (b' ⨳ c') := by
simp only [nmul_comm _ (_ ⨳ _)]
convert nmul_nadd_lt₃ hb hc ha using 1 <;>
· simp only [nadd_eq_add, NatOrdinal.toOrdinal_toNatOrdinal]; abel_nf
#align ordinal.nmul_nadd_lt₃' Ordinal.nmul_nadd_lt₃'
theorem nmul_nadd_le₃' {a' b' c' : Ordinal} (ha : a' ≤ a) (hb : b' ≤ b) (hc : c' ≤ c) :
a' ⨳ (b ⨳ c) ♯ a ⨳ (b' ⨳ c) ♯ a ⨳ (b ⨳ c') ♯ a' ⨳ (b' ⨳ c') ≤
a ⨳ (b ⨳ c) ♯ a' ⨳ (b' ⨳ c) ♯ a' ⨳ (b ⨳ c') ♯ a ⨳ (b' ⨳ c') := by
simp only [nmul_comm _ (_ ⨳ _)]
convert nmul_nadd_le₃ hb hc ha using 1 <;>
· simp only [nadd_eq_add, NatOrdinal.toOrdinal_toNatOrdinal]; abel_nf
#align ordinal.nmul_nadd_le₃' Ordinal.nmul_nadd_le₃'
theorem lt_nmul_iff₃ :
d < a ⨳ b ⨳ c ↔
∃ a' < a, ∃ b' < b, ∃ c' < c,
d ♯ a' ⨳ b' ⨳ c ♯ a' ⨳ b ⨳ c' ♯ a ⨳ b' ⨳ c' ≤
a' ⨳ b ⨳ c ♯ a ⨳ b' ⨳ c ♯ a ⨳ b ⨳ c' ♯ a' ⨳ b' ⨳ c' := by
refine ⟨fun h => ?_, ?_⟩
· rcases lt_nmul_iff.1 h with ⟨e, he, c', hc, H₁⟩
rcases lt_nmul_iff.1 he with ⟨a', ha, b', hb, H₂⟩
refine ⟨a', ha, b', hb, c', hc, ?_⟩
have := nadd_le_nadd H₁ (nmul_nadd_le H₂ hc.le)
simp only [nadd_nmul, nadd_assoc] at this
rw [nadd_left_comm, nadd_left_comm d, nadd_left_comm, nadd_le_nadd_iff_left,
nadd_left_comm (a ⨳ b' ⨳ c), nadd_left_comm (a' ⨳ b ⨳ c), nadd_left_comm (a ⨳ b ⨳ c'),
nadd_le_nadd_iff_left, nadd_left_comm (a ⨳ b ⨳ c'), nadd_left_comm (a ⨳ b ⨳ c')] at this
simpa only [nadd_assoc]
· rintro ⟨a', ha, b', hb, c', hc, h⟩
have := h.trans_lt (nmul_nadd_lt₃ ha hb hc)
repeat' rw [nadd_lt_nadd_iff_right] at this
assumption
#align ordinal.lt_nmul_iff₃ Ordinal.lt_nmul_iff₃
theorem nmul_le_iff₃ :
a ⨳ b ⨳ c ≤ d ↔
∀ a' < a, ∀ b' < b, ∀ c' < c,
a' ⨳ b ⨳ c ♯ a ⨳ b' ⨳ c ♯ a ⨳ b ⨳ c' ♯ a' ⨳ b' ⨳ c' <
d ♯ a' ⨳ b' ⨳ c ♯ a' ⨳ b ⨳ c' ♯ a ⨳ b' ⨳ c' := by
rw [← not_iff_not]; simp [lt_nmul_iff₃]
#align ordinal.nmul_le_iff₃ Ordinal.nmul_le_iff₃
theorem lt_nmul_iff₃' :
d < a ⨳ (b ⨳ c) ↔
∃ a' < a, ∃ b' < b, ∃ c' < c,
d ♯ a' ⨳ (b' ⨳ c) ♯ a' ⨳ (b ⨳ c') ♯ a ⨳ (b' ⨳ c') ≤
a' ⨳ (b ⨳ c) ♯ a ⨳ (b' ⨳ c) ♯ a ⨳ (b ⨳ c') ♯ a' ⨳ (b' ⨳ c') := by
simp only [nmul_comm _ (_ ⨳ _), lt_nmul_iff₃, nadd_eq_add, NatOrdinal.toOrdinal_toNatOrdinal]
constructor <;> rintro ⟨b', hb, c', hc, a', ha, h⟩
· use a', ha, b', hb, c', hc; convert h using 1 <;> abel_nf
· use c', hc, a', ha, b', hb; convert h using 1 <;> abel_nf
#align ordinal.lt_nmul_iff₃' Ordinal.lt_nmul_iff₃'
theorem nmul_le_iff₃' :
a ⨳ (b ⨳ c) ≤ d ↔
∀ a' < a, ∀ b' < b, ∀ c' < c,
a' ⨳ (b ⨳ c) ♯ a ⨳ (b' ⨳ c) ♯ a ⨳ (b ⨳ c') ♯ a' ⨳ (b' ⨳ c') <
d ♯ a' ⨳ (b' ⨳ c) ♯ a' ⨳ (b ⨳ c') ♯ a ⨳ (b' ⨳ c') := by
rw [← not_iff_not]; simp [lt_nmul_iff₃']
#align ordinal.nmul_le_iff₃' Ordinal.nmul_le_iff₃'
theorem nmul_assoc : ∀ a b c, a ⨳ b ⨳ c = a ⨳ (b ⨳ c)
| a, b, c => by
apply le_antisymm
· rw [nmul_le_iff₃]
intro a' ha b' hb c' hc
-- Porting note: the next line was just
-- repeat' rw [nmul_assoc]
-- but we need to spell out the arguments for the termination checker.
rw [nmul_assoc a' b c, nmul_assoc a b' c, nmul_assoc a b c', nmul_assoc a' b' c',
nmul_assoc a' b' c, nmul_assoc a' b c', nmul_assoc a b' c']
exact nmul_nadd_lt₃' ha hb hc
· rw [nmul_le_iff₃']
intro a' ha b' hb c' hc
-- Porting note: the next line was just
-- repeat' rw [← nmul_assoc]
-- but we need to spell out the arguments for the termination checker.
rw [← nmul_assoc a' b c, ← nmul_assoc a b' c, ← nmul_assoc a b c', ← nmul_assoc a' b' c',
← nmul_assoc a' b' c, ← nmul_assoc a' b c', ← nmul_assoc a b' c']
exact nmul_nadd_lt₃ ha hb hc
termination_by a b c => (a, b, c)
#align ordinal.nmul_assoc Ordinal.nmul_assoc
end Ordinal
open Ordinal
instance : Mul NatOrdinal :=
⟨nmul⟩
-- Porting note: had to add universe annotations to ensure that the
-- two sources lived in the same universe.
instance : OrderedCommSemiring NatOrdinal.{u} :=
{ NatOrdinal.orderedCancelAddCommMonoid.{u},
NatOrdinal.linearOrder.{u} with
mul := (· * ·)
left_distrib := nmul_nadd
right_distrib := nadd_nmul
zero_mul := zero_nmul
mul_zero := nmul_zero
mul_assoc := nmul_assoc
one := 1
one_mul := one_nmul
mul_one := nmul_one
mul_comm := nmul_comm
zero_le_one := @zero_le_one Ordinal _ _ _ _
mul_le_mul_of_nonneg_left := fun a b c => nmul_le_nmul_of_nonneg_left
mul_le_mul_of_nonneg_right := fun a b c => nmul_le_nmul_of_nonneg_right }
namespace Ordinal
theorem nmul_eq_mul (a b) : a ⨳ b = toOrdinal (toNatOrdinal a * toNatOrdinal b) :=
rfl
#align ordinal.nmul_eq_mul Ordinal.nmul_eq_mul
theorem nmul_nadd_one : ∀ a b, a ⨳ (b ♯ 1) = a ⨳ b ♯ a :=
@mul_add_one NatOrdinal _ _ _
#align ordinal.nmul_nadd_one Ordinal.nmul_nadd_one
theorem nadd_one_nmul : ∀ a b, (a ♯ 1) ⨳ b = a ⨳ b ♯ b :=
@add_one_mul NatOrdinal _ _ _
#align ordinal.nadd_one_nmul Ordinal.nadd_one_nmul
theorem nmul_succ (a b) : a ⨳ succ b = a ⨳ b ♯ a := by rw [← nadd_one, nmul_nadd_one]
#align ordinal.nmul_succ Ordinal.nmul_succ
theorem succ_nmul (a b) : succ a ⨳ b = a ⨳ b ♯ b := by rw [← nadd_one, nadd_one_nmul]
#align ordinal.succ_nmul Ordinal.succ_nmul
theorem nmul_add_one : ∀ a b, a ⨳ (b + 1) = a ⨳ b ♯ a :=
nmul_succ
#align ordinal.nmul_add_one Ordinal.nmul_add_one
theorem add_one_nmul : ∀ a b, (a + 1) ⨳ b = a ⨳ b ♯ b :=
succ_nmul
#align ordinal.add_one_nmul Ordinal.add_one_nmul
end Ordinal
namespace NatOrdinal
open Ordinal
theorem mul_le_nmul (a b : Ordinal.{u}) : a * b ≤ a ⨳ b := by
refine b.limitRecOn ?_ ?_ ?_
· simp
· intro c h
rw [mul_succ, nmul_succ]
exact (add_le_nadd _ a).trans (nadd_le_nadd_right h a)
· intro c hc H
rcases eq_zero_or_pos a with (rfl | ha)
· simp
· rw [← IsNormal.blsub_eq.{u, u} (mul_isNormal ha) hc, blsub_le_iff]
exact fun i hi => (H i hi).trans_lt (nmul_lt_nmul_of_pos_left hi ha)
#align nat_ordinal.mul_le_nmul NatOrdinal.mul_le_nmul
end NatOrdinal