|
| 1 | +/- |
| 2 | +Copyright (c) 2024 Jujian Zhang. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Jujian Zhang |
| 5 | +-/ |
| 6 | +import Mathlib.RingTheory.Flat.Basic |
| 7 | +import Mathlib.Algebra.Homology.ShortComplex.ModuleCat |
| 8 | +import Mathlib.Algebra.Category.ModuleCat.Monoidal.Basic |
| 9 | + |
| 10 | +/-! |
| 11 | +# Tensoring with a flat module is an exact functor |
| 12 | +
|
| 13 | +In this file we prove that tensoring with a flat module is an exact functor. |
| 14 | +
|
| 15 | +## Main results |
| 16 | +
|
| 17 | +- `Module.Flat.iff_lTensor_preserves_shortComplex_exact`: an `R`-module `M` is flat if and only if |
| 18 | + for every exact sequence `A ⟶ B ⟶ C`, `M ⊗ A ⟶ M ⊗ B ⟶ M ⊗ C` is also exact. |
| 19 | +
|
| 20 | +- `Module.Flat.iff_rTensor_preserves_shortComplex_exact`: an `R`-module `M` is flat if and only if |
| 21 | + for every short exact sequence `A ⟶ B ⟶ C`, `A ⊗ M ⟶ B ⊗ M ⟶ C ⊗ M` is also exact. |
| 22 | +
|
| 23 | +## TODO |
| 24 | +
|
| 25 | +- Prove that tensoring with a flat module is an exact functor in the sense that it preserves both |
| 26 | + finite limits and colimits. |
| 27 | +- Relate flatness with `Tor` |
| 28 | +
|
| 29 | +-/ |
| 30 | + |
| 31 | +universe u |
| 32 | + |
| 33 | +open CategoryTheory MonoidalCategory ShortComplex.ShortExact |
| 34 | + |
| 35 | +namespace Module.Flat |
| 36 | + |
| 37 | +variable {R : Type u} [CommRing R] (M : ModuleCat.{u} R) |
| 38 | + |
| 39 | +lemma lTensor_shortComplex_exact [Flat R M] (C : ShortComplex $ ModuleCat R) (hC : C.Exact) : |
| 40 | + C.map (tensorLeft M) |>.Exact := by |
| 41 | + rw [moduleCat_exact_iff_function_exact] at hC ⊢ |
| 42 | + exact lTensor_exact M hC |
| 43 | + |
| 44 | +lemma rTensor_shortComplex_exact [Flat R M] (C : ShortComplex $ ModuleCat R) (hC : C.Exact) : |
| 45 | + C.map (tensorRight M) |>.Exact := by |
| 46 | + rw [moduleCat_exact_iff_function_exact] at hC ⊢ |
| 47 | + exact rTensor_exact M hC |
| 48 | + |
| 49 | +lemma iff_lTensor_preserves_shortComplex_exact : |
| 50 | + Flat R M ↔ |
| 51 | + ∀ (C : ShortComplex $ ModuleCat R) (_ : C.Exact), (C.map (tensorLeft M) |>.Exact) := |
| 52 | + ⟨fun _ _ ↦ lTensor_shortComplex_exact _ _, fun H ↦ iff_lTensor_exact.2 $ |
| 53 | + fun _ _ _ _ _ _ _ _ _ f g h ↦ |
| 54 | + moduleCat_exact_iff_function_exact _ |>.1 $ |
| 55 | + H (.mk (ModuleCat.ofHom f) (ModuleCat.ofHom g) |
| 56 | + (DFunLike.ext _ _ h.apply_apply_eq_zero)) |
| 57 | + (moduleCat_exact_iff_function_exact _ |>.2 h)⟩ |
| 58 | + |
| 59 | +lemma iff_rTensor_preserves_shortComplex_exact : |
| 60 | + Flat R M ↔ |
| 61 | + ∀ (C : ShortComplex $ ModuleCat R) (_ : C.Exact), (C.map (tensorRight M) |>.Exact) := |
| 62 | + ⟨fun _ _ ↦ rTensor_shortComplex_exact _ _, fun H ↦ iff_rTensor_exact.2 $ |
| 63 | + fun _ _ _ _ _ _ _ _ _ f g h ↦ |
| 64 | + moduleCat_exact_iff_function_exact _ |>.1 $ |
| 65 | + H (.mk (ModuleCat.ofHom f) (ModuleCat.ofHom g) |
| 66 | + (DFunLike.ext _ _ h.apply_apply_eq_zero)) |
| 67 | + (moduleCat_exact_iff_function_exact _ |>.2 h)⟩ |
| 68 | + |
| 69 | +end Module.Flat |
0 commit comments