-
Notifications
You must be signed in to change notification settings - Fork 546
/
Copy pathMain.lean
883 lines (820 loc) · 36.5 KB
/
Main.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
/-
Copyright (c) 2020 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
prelude
import Lean.Meta.Transform
import Lean.Meta.Tactic.Replace
import Lean.Meta.Tactic.UnifyEq
import Lean.Meta.Tactic.Simp.Rewrite
import Lean.Meta.Tactic.Simp.Diagnostics
import Lean.Meta.Match.Value
namespace Lean.Meta
namespace Simp
builtin_initialize congrHypothesisExceptionId : InternalExceptionId ←
registerInternalExceptionId `congrHypothesisFailed
def throwCongrHypothesisFailed : MetaM α :=
throw <| Exception.internal congrHypothesisExceptionId
/--
Helper method for bootstrapping purposes. It disables `arith` if support theorems have not been defined yet.
-/
def Config.updateArith (c : Config) : CoreM Config := do
if c.arith then
if (← getEnv).contains ``Nat.Linear.ExprCnstr.eq_of_toNormPoly_eq then
return c
else
return { c with arith := false }
else
return c
/-- Return true if `e` is of the form `ofNat n` where `n` is a kernel Nat literal -/
def isOfNatNatLit (e : Expr) : Bool :=
e.isAppOfArity ``OfNat.ofNat 3 && e.appFn!.appArg!.isRawNatLit
/--
If `e` is a raw Nat literal and `OfNat.ofNat` is not in the list of declarations to unfold,
return an `OfNat.ofNat`-application.
-/
def foldRawNatLit (e : Expr) : SimpM Expr := do
match e.rawNatLit? with
| some n =>
/- If `OfNat.ofNat` is marked to be unfolded, we do not pack orphan nat literals as `OfNat.ofNat` applications
to avoid non-termination. See issue #788. -/
if (← readThe Simp.Context).isDeclToUnfold ``OfNat.ofNat then
return e
else
return toExpr n
| none => return e
/-- Return true if `e` is of the form `ofScientific n b m` where `n` and `m` are kernel Nat literals. -/
def isOfScientificLit (e : Expr) : Bool :=
e.isAppOfArity ``OfScientific.ofScientific 5 && (e.getArg! 4).isRawNatLit && (e.getArg! 2).isRawNatLit
/-- Return true if `e` is of the form `Char.ofNat n` where `n` is a kernel Nat literals. -/
def isCharLit (e : Expr) : Bool :=
e.isAppOfArity ``Char.ofNat 1 && e.appArg!.isRawNatLit
private def reduceProjFn? (e : Expr) : SimpM (Option Expr) := do
matchConst e.getAppFn (fun _ => pure none) fun cinfo _ => do
match (← getProjectionFnInfo? cinfo.name) with
| none => return none
| some projInfo =>
/- Helper function for applying `reduceProj?` to the result of `unfoldDefinition?` -/
let reduceProjCont? (e? : Option Expr) : SimpM (Option Expr) := do
match e? with
| none => pure none
| some e =>
match (← reduceProj? e.getAppFn) with
| some f => return some (mkAppN f e.getAppArgs)
| none => return none
if projInfo.fromClass then
-- `class` projection
if (← getContext).isDeclToUnfold cinfo.name then
/-
If user requested `class` projection to be unfolded, we set transparency mode to `.instances`,
and invoke `unfoldDefinition?`.
Recall that `unfoldDefinition?` has support for unfolding this kind of projection when transparency mode is `.instances`.
-/
let e? ← withReducibleAndInstances <| unfoldDefinition? e
if e?.isSome then
recordSimpTheorem (.decl cinfo.name)
return e?
else
/-
Recall that class projections are **not** marked with `[reducible]` because we want them to be
in "reducible canonical form". However, if we have a class projection of the form `Class.projFn (Class.mk ...)`,
we want to reduce it. See issue #1869 for an example where this is important.
-/
unless e.getAppNumArgs > projInfo.numParams do
return none
let major := e.getArg! projInfo.numParams
unless (← isConstructorApp major) do
return none
reduceProjCont? (← withDefault <| unfoldDefinition? e)
else
-- `structure` projections
reduceProjCont? (← unfoldDefinition? e)
private def reduceFVar (cfg : Config) (thms : SimpTheoremsArray) (e : Expr) : SimpM Expr := do
let localDecl ← getFVarLocalDecl e
if cfg.zetaDelta || thms.isLetDeclToUnfold e.fvarId! || localDecl.isImplementationDetail then
if !cfg.zetaDelta && thms.isLetDeclToUnfold e.fvarId! then
recordSimpTheorem (.fvar localDecl.fvarId)
let some v := localDecl.value? | return e
return v
else
return e
/--
Return true if `declName` is the name of a definition of the form
```
def declName ... :=
match ... with
| ...
```
-/
private partial def isMatchDef (declName : Name) : CoreM Bool := do
let .defnInfo info ← getConstInfo declName | return false
return go (← getEnv) info.value
where
go (env : Environment) (e : Expr) : Bool :=
if e.isLambda then
go env e.bindingBody!
else
let f := e.getAppFn
f.isConst && isMatcherCore env f.constName!
/--
Try to unfold `e`.
-/
private def unfold? (e : Expr) : SimpM (Option Expr) := do
let f := e.getAppFn
if !f.isConst then
return none
let fName := f.constName!
let ctx ← getContext
let rec unfoldDeclToUnfold? : SimpM (Option Expr) := do
let options ← getOptions
let cfg ← getConfig
-- Support for issue #2042
if cfg.unfoldPartialApp -- If we are unfolding partial applications, ignore issue #2042
-- When smart unfolding is enabled, and `f` supports it, we don't need to worry about issue #2042
|| (smartUnfolding.get options && (← getEnv).contains (mkSmartUnfoldingNameFor fName)) then
withDefault <| unfoldDefinition? e
else
-- `We are not unfolding partial applications, and `fName` does not have smart unfolding support.
-- Thus, we must check whether the arity of the function >= number of arguments.
let some cinfo := (← getEnv).find? fName | return none
let some value := cinfo.value? | return none
let arity := value.getNumHeadLambdas
-- Partially applied function, return `none`. See issue #2042
if arity > e.getAppNumArgs then return none
withDefault <| unfoldDefinition? e
if (← isProjectionFn fName) then
return none -- should be reduced by `reduceProjFn?`
else if ctx.config.autoUnfold then
if ctx.simpTheorems.isErased (.decl fName) then
return none
else if hasSmartUnfoldingDecl (← getEnv) fName then
withDefault <| unfoldDefinition? e
else if (← isMatchDef fName) then
let some value ← withDefault <| unfoldDefinition? e | return none
let .reduced value ← reduceMatcher? value | return none
return some value
else
return none
else if ctx.isDeclToUnfold fName then
unfoldDeclToUnfold?
else
return none
private def reduceStep (e : Expr) : SimpM Expr := do
let cfg ← getConfig
let f := e.getAppFn
if f.isMVar then
return (← instantiateMVars e)
if cfg.beta then
if f.isHeadBetaTargetFn false then
return f.betaRev e.getAppRevArgs
-- TODO: eta reduction
if cfg.proj then
match (← reduceProj? e) with
| some e => return e
| none =>
match (← reduceProjFn? e) with
| some e => return e
| none => pure ()
if cfg.iota then
match (← reduceRecMatcher? e) with
| some e => return e
| none => pure ()
if cfg.zeta then
if let some (args, _, _, v, b) := e.letFunAppArgs? then
return mkAppN (b.instantiate1 v) args
if e.isLet then
return e.letBody!.instantiate1 e.letValue!
match (← unfold? e) with
| some e' =>
trace[Meta.Tactic.simp.rewrite] "unfold {mkConst e.getAppFn.constName!}, {e} ==> {e'}"
recordSimpTheorem (.decl e.getAppFn.constName!)
return e'
| none => foldRawNatLit e
private partial def reduce (e : Expr) : SimpM Expr := withIncRecDepth do
let e' ← reduceStep e
if e' == e then
return e'
else
reduce e'
instance : Inhabited (SimpM α) where
default := fun _ _ _ => default
partial def lambdaTelescopeDSimp (e : Expr) (k : Array Expr → Expr → SimpM α) : SimpM α := do
go #[] e
where
go (xs : Array Expr) (e : Expr) : SimpM α := do
match e with
| .lam n d b c => withLocalDecl n c (← dsimp d) fun x => go (xs.push x) (b.instantiate1 x)
| e => k xs e
inductive SimpLetCase where
| dep -- `let x := v; b` is not equivalent to `(fun x => b) v`
| nondepDepVar -- `let x := v; b` is equivalent to `(fun x => b) v`, but result type depends on `x`
| nondep -- `let x := v; b` is equivalent to `(fun x => b) v`, and result type does not depend on `x`
def getSimpLetCase (n : Name) (t : Expr) (b : Expr) : MetaM SimpLetCase := do
withLocalDeclD n t fun x => do
let bx := b.instantiate1 x
/- The following step is potentially very expensive when we have many nested let-decls.
TODO: handle a block of nested let decls in a single pass if this becomes a performance problem. -/
if (← isTypeCorrect bx) then
let bxType ← whnf (← inferType bx)
if (← dependsOn bxType x.fvarId!) then
return SimpLetCase.nondepDepVar
else
return SimpLetCase.nondep
else
return SimpLetCase.dep
/--
We use `withNewlemmas` whenever updating the local context.
-/
def withNewLemmas {α} (xs : Array Expr) (f : SimpM α) : SimpM α := do
if (← getConfig).contextual then
withFreshCache do
let mut s ← getSimpTheorems
let mut updated := false
for x in xs do
if (← isProof x) then
s ← s.addTheorem (.fvar x.fvarId!) x
updated := true
if updated then
withTheReader Context (fun ctx => { ctx with simpTheorems := s }) f
else
f
else if (← getMethods).wellBehavedDischarge then
-- See comment at `Methods.wellBehavedDischarge` to understand why
-- we don't have to reset the cache
f
else
withFreshCache do f
def simpProj (e : Expr) : SimpM Result := do
match (← reduceProj? e) with
| some e => return { expr := e }
| none =>
let s := e.projExpr!
let motive? ← withLocalDeclD `s (← inferType s) fun s => do
let p := e.updateProj! s
if (← dependsOn (← inferType p) s.fvarId!) then
return none
else
let motive ← mkLambdaFVars #[s] (← mkEq e p)
if !(← isTypeCorrect motive) then
return none
else
return some motive
if let some motive := motive? then
let r ← simp s
let eNew := e.updateProj! r.expr
match r.proof? with
| none => return { expr := eNew }
| some h =>
let hNew ← mkEqNDRec motive (← mkEqRefl e) h
return { expr := eNew, proof? := some hNew }
else
return { expr := (← dsimp e) }
def simpConst (e : Expr) : SimpM Result :=
return { expr := (← reduce e) }
def simpLambda (e : Expr) : SimpM Result :=
withParent e <| lambdaTelescopeDSimp e fun xs e => withNewLemmas xs do
let r ← simp e
let eNew ← mkLambdaFVars xs r.expr
match r.proof? with
| none => return { expr := eNew }
| some h =>
let p ← xs.foldrM (init := h) fun x h => do
mkFunExt (← mkLambdaFVars #[x] h)
return { expr := eNew, proof? := p }
def simpArrow (e : Expr) : SimpM Result := do
trace[Debug.Meta.Tactic.simp] "arrow {e}"
let p := e.bindingDomain!
let q := e.bindingBody!
let rp ← simp p
trace[Debug.Meta.Tactic.simp] "arrow [{(← getConfig).contextual}] {p} [{← isProp p}] -> {q} [{← isProp q}]"
if (← pure (← getConfig).contextual <&&> isProp p <&&> isProp q) then
trace[Debug.Meta.Tactic.simp] "ctx arrow {rp.expr} -> {q}"
withLocalDeclD e.bindingName! rp.expr fun h => withNewLemmas #[h] do
let rq ← simp q
match rq.proof? with
| none => mkImpCongr e rp rq
| some hq =>
let hq ← mkLambdaFVars #[h] hq
/-
We use the default reducibility setting at `mkImpDepCongrCtx` and `mkImpCongrCtx` because they use the theorems
```lean
@implies_dep_congr_ctx : ∀ {p₁ p₂ q₁ : Prop}, p₁ = p₂ → ∀ {q₂ : p₂ → Prop}, (∀ (h : p₂), q₁ = q₂ h) → (p₁ → q₁) = ∀ (h : p₂), q₂ h
@implies_congr_ctx : ∀ {p₁ p₂ q₁ q₂ : Prop}, p₁ = p₂ → (p₂ → q₁ = q₂) → (p₁ → q₁) = (p₂ → q₂)
```
And the proofs may be from `rfl` theorems which are now omitted. Moreover, we cannot establish that the two
terms are definitionally equal using `withReducible`.
TODO (better solution): provide the problematic implicit arguments explicitly. It is more efficient and avoids this
problem.
-/
if rq.expr.containsFVar h.fvarId! then
return { expr := (← mkForallFVars #[h] rq.expr), proof? := (← withDefault <| mkImpDepCongrCtx (← rp.getProof) hq) }
else
return { expr := e.updateForallE! rp.expr rq.expr, proof? := (← withDefault <| mkImpCongrCtx (← rp.getProof) hq) }
else
mkImpCongr e rp (← simp q)
def simpForall (e : Expr) : SimpM Result := withParent e do
trace[Debug.Meta.Tactic.simp] "forall {e}"
if e.isArrow then
simpArrow e
else if (← isProp e) then
/- The forall is a proposition. -/
let domain := e.bindingDomain!
if (← isProp domain) then
/-
The domain of the forall is also a proposition, and we can use `forall_prop_domain_congr`
IF we can simplify the domain.
-/
let rd ← simp domain
if let some h₁ := rd.proof? then
/- Using
```
theorem forall_prop_domain_congr {p₁ p₂ : Prop} {q₁ : p₁ → Prop} {q₂ : p₂ → Prop}
(h₁ : p₁ = p₂)
(h₂ : ∀ a : p₂, q₁ (h₁.substr a) = q₂ a)
: (∀ a : p₁, q₁ a) = (∀ a : p₂, q₂ a)
```
Remark: we should consider whether we want to add congruence lemma support for arbitrary `forall`-expressions.
Then, the theroem above can be marked as `@[congr]` and the following code deleted.
-/
let p₁ := domain
let p₂ := rd.expr
let q₁ := mkLambda e.bindingName! e.bindingInfo! p₁ e.bindingBody!
let result ← withLocalDecl e.bindingName! e.bindingInfo! p₂ fun a => withNewLemmas #[a] do
let prop := mkSort levelZero
let h₁_substr_a := mkApp6 (mkConst ``Eq.substr [levelOne]) prop (mkLambda `x .default prop (mkBVar 0)) p₂ p₁ h₁ a
let q_h₁_substr_a := e.bindingBody!.instantiate1 h₁_substr_a
let rb ← simp q_h₁_substr_a
let h₂ ← mkLambdaFVars #[a] (← rb.getProof)
let q₂ ← mkLambdaFVars #[a] rb.expr
let result ← mkForallFVars #[a] rb.expr
let proof := mkApp6 (mkConst ``forall_prop_domain_congr) p₁ p₂ q₁ q₂ h₁ h₂
return { expr := result, proof? := proof }
return result
let domain ← dsimp domain
withLocalDecl e.bindingName! e.bindingInfo! domain fun x => withNewLemmas #[x] do
let b := e.bindingBody!.instantiate1 x
let rb ← simp b
let eNew ← mkForallFVars #[x] rb.expr
match rb.proof? with
| none => return { expr := eNew }
| some h => return { expr := eNew, proof? := (← mkForallCongr (← mkLambdaFVars #[x] h)) }
else
return { expr := (← dsimp e) }
def simpLet (e : Expr) : SimpM Result := do
let .letE n t v b _ := e | unreachable!
if (← getConfig).zeta then
return { expr := b.instantiate1 v }
else
match (← getSimpLetCase n t b) with
| SimpLetCase.dep => return { expr := (← dsimp e) }
| SimpLetCase.nondep =>
let rv ← simp v
withLocalDeclD n t fun x => withNewLemmas #[x] do
let bx := b.instantiate1 x
let rbx ← simp bx
let hb? ← match rbx.proof? with
| none => pure none
| some h => pure (some (← mkLambdaFVars #[x] h))
let e' := mkLet n t rv.expr (← rbx.expr.abstractM #[x])
match rv.proof?, hb? with
| none, none => return { expr := e' }
| some h, none => return { expr := e', proof? := some (← mkLetValCongr (← mkLambdaFVars #[x] rbx.expr) h) }
| _, some h => return { expr := e', proof? := some (← mkLetCongr (← rv.getProof) h) }
| SimpLetCase.nondepDepVar =>
let v' ← dsimp v
withLocalDeclD n t fun x => withNewLemmas #[x] do
let bx := b.instantiate1 x
let rbx ← simp bx
let e' := mkLet n t v' (← rbx.expr.abstractM #[x])
match rbx.proof? with
| none => return { expr := e' }
| some h =>
let h ← mkLambdaFVars #[x] h
return { expr := e', proof? := some (← mkLetBodyCongr v' h) }
private def dsimpReduce : DSimproc := fun e => do
let mut eNew ← reduce e
if eNew.isFVar then
eNew ← reduceFVar (← getConfig) (← getSimpTheorems) eNew
if eNew != e then return .visit eNew else return .done e
/-- Helper `dsimproc` for `doNotVisitOfNat` and `doNotVisitOfScientific` -/
private def doNotVisit (pred : Expr → Bool) (declName : Name) : DSimproc := fun e => do
if pred e then
if (← readThe Simp.Context).isDeclToUnfold declName then
return .continue e
else
return .done e
else
return .continue e
/--
Auliliary `dsimproc` for not visiting `OfNat.ofNat` application subterms.
This is the `dsimp` equivalent of the approach used at `visitApp`.
Recall that we fold orphan raw Nat literals.
-/
private def doNotVisitOfNat : DSimproc := doNotVisit isOfNatNatLit ``OfNat.ofNat
/--
Auliliary `dsimproc` for not visiting `OfScientific.ofScientific` application subterms.
-/
private def doNotVisitOfScientific : DSimproc := doNotVisit isOfScientificLit ``OfScientific.ofScientific
/--
Auliliary `dsimproc` for not visiting `Char` literal subterms.
-/
private def doNotVisitCharLit : DSimproc := doNotVisit isCharLit ``Char.ofNat
@[export lean_dsimp]
private partial def dsimpImpl (e : Expr) : SimpM Expr := do
let cfg ← getConfig
unless cfg.dsimp do
return e
let m ← getMethods
let pre := m.dpre >> doNotVisitOfNat >> doNotVisitOfScientific >> doNotVisitCharLit
let post := m.dpost >> dsimpReduce
transform (usedLetOnly := cfg.zeta) e (pre := pre) (post := post)
def visitFn (e : Expr) : SimpM Result := do
let f := e.getAppFn
let fNew ← simp f
if fNew.expr == f then
return { expr := e }
else
let args := e.getAppArgs
let eNew := mkAppN fNew.expr args
if fNew.proof?.isNone then return { expr := eNew }
let mut proof ← fNew.getProof
for arg in args do
proof ← Meta.mkCongrFun proof arg
return { expr := eNew, proof? := proof }
def congrDefault (e : Expr) : SimpM Result := do
if let some result ← tryAutoCongrTheorem? e then
result.mkEqTrans (← visitFn result.expr)
else
withParent e <| e.withApp fun f args => do
congrArgs (← simp f) args
/-- Process the given congruence theorem hypothesis. Return true if it made "progress". -/
def processCongrHypothesis (h : Expr) : SimpM Bool := do
forallTelescopeReducing (← inferType h) fun xs hType => withNewLemmas xs do
let lhs ← instantiateMVars hType.appFn!.appArg!
let r ← simp lhs
let rhs := hType.appArg!
rhs.withApp fun m zs => do
let val ← mkLambdaFVars zs r.expr
unless (← isDefEq m val) do
throwCongrHypothesisFailed
let mut proof ← r.getProof
if hType.isAppOf ``Iff then
try proof ← mkIffOfEq proof
catch _ => throwCongrHypothesisFailed
unless (← isDefEq h (← mkLambdaFVars xs proof)) do
throwCongrHypothesisFailed
/- We used to return `false` if `r.proof? = none` (i.e., an implicit `rfl` proof) because we
assumed `dsimp` would also be able to simplify the term, but this is not true
for non-trivial user-provided theorems.
Example:
```
@[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a, mem a s → f a = g a) : image f s = image g s :=
...
example {Γ: Set Nat}: (image (Nat.succ ∘ Nat.succ) Γ) = (image (fun a => a.succ.succ) Γ) := by
simp only [Function.comp_apply]
```
`Function.comp_apply` is a `rfl` theorem, but `dsimp` will not apply it because the composition
is not fully applied. See comment at issue #1113
Thus, we have an extra check now if `xs.size > 0`. TODO: refine this test.
-/
return r.proof?.isSome || (xs.size > 0 && lhs != r.expr)
/-- Try to rewrite `e` children using the given congruence theorem -/
def trySimpCongrTheorem? (c : SimpCongrTheorem) (e : Expr) : SimpM (Option Result) := withNewMCtxDepth do
recordCongrTheorem c.theoremName
trace[Debug.Meta.Tactic.simp.congr] "{c.theoremName}, {e}"
let thm ← mkConstWithFreshMVarLevels c.theoremName
let (xs, bis, type) ← forallMetaTelescopeReducing (← inferType thm)
if c.hypothesesPos.any (· ≥ xs.size) then
return none
let isIff := type.isAppOf ``Iff
let lhs := type.appFn!.appArg!
let rhs := type.appArg!
let numArgs := lhs.getAppNumArgs
let mut e := e
let mut extraArgs := #[]
if e.getAppNumArgs > numArgs then
let args := e.getAppArgs
e := mkAppN e.getAppFn args[:numArgs]
extraArgs := args[numArgs:].toArray
if (← isDefEq lhs e) then
let mut modified := false
for i in c.hypothesesPos do
let x := xs[i]!
try
if (← processCongrHypothesis x) then
modified := true
catch _ =>
trace[Meta.Tactic.simp.congr] "processCongrHypothesis {c.theoremName} failed {← inferType x}"
-- Remark: we don't need to check ex.isMaxRecDepth anymore since `try .. catch ..`
-- does not catch runtime exceptions by default.
return none
unless modified do
trace[Meta.Tactic.simp.congr] "{c.theoremName} not modified"
return none
unless (← synthesizeArgs (.decl c.theoremName) bis xs) do
trace[Meta.Tactic.simp.congr] "{c.theoremName} synthesizeArgs failed"
return none
let eNew ← instantiateMVars rhs
let mut proof ← instantiateMVars (mkAppN thm xs)
if isIff then
try proof ← mkAppM ``propext #[proof]
catch _ => return none
if (← hasAssignableMVar proof <||> hasAssignableMVar eNew) then
trace[Meta.Tactic.simp.congr] "{c.theoremName} has unassigned metavariables"
return none
congrArgs { expr := eNew, proof? := proof } extraArgs
else
return none
def congr (e : Expr) : SimpM Result := do
let f := e.getAppFn
if f.isConst then
let congrThms ← getSimpCongrTheorems
let cs := congrThms.get f.constName!
for c in cs do
match (← trySimpCongrTheorem? c e) with
| none => pure ()
| some r => return r
congrDefault e
else
congrDefault e
def simpApp (e : Expr) : SimpM Result := do
if isOfNatNatLit e || isOfScientificLit e || isCharLit e then
-- Recall that we fold "orphan" kernel Nat literals `n` into `OfNat.ofNat n`
return { expr := e }
else
congr e
def simpStep (e : Expr) : SimpM Result := do
match e with
| .mdata m e => let r ← simp e; return { r with expr := mkMData m r.expr }
| .proj .. => simpProj e
| .app .. => simpApp e
| .lam .. => simpLambda e
| .forallE .. => simpForall e
| .letE .. => simpLet e
| .const .. => simpConst e
| .bvar .. => unreachable!
| .sort .. => return { expr := e }
| .lit .. => return { expr := e }
| .mvar .. => return { expr := (← instantiateMVars e) }
| .fvar .. => return { expr := (← reduceFVar (← getConfig) (← getSimpTheorems) e) }
def cacheResult (e : Expr) (cfg : Config) (r : Result) : SimpM Result := do
if cfg.memoize && r.cache then
modify fun s => { s with cache := s.cache.insert e r }
return r
partial def simpLoop (e : Expr) : SimpM Result := withIncRecDepth do
let cfg ← getConfig
if (← get).numSteps > cfg.maxSteps then
throwError "simp failed, maximum number of steps exceeded"
else
checkSystem "simp"
modify fun s => { s with numSteps := s.numSteps + 1 }
match (← pre e) with
| .done r => cacheResult e cfg r
| .visit r => cacheResult e cfg (← r.mkEqTrans (← simpLoop r.expr))
| .continue none => visitPreContinue cfg { expr := e }
| .continue (some r) => visitPreContinue cfg r
where
visitPreContinue (cfg : Config) (r : Result) : SimpM Result := do
let eNew ← reduceStep r.expr
if eNew != r.expr then
let r := { r with expr := eNew }
cacheResult e cfg (← r.mkEqTrans (← simpLoop r.expr))
else
let r ← r.mkEqTrans (← simpStep r.expr)
visitPost cfg r
visitPost (cfg : Config) (r : Result) : SimpM Result := do
match (← post r.expr) with
| .done r' => cacheResult e cfg (← r.mkEqTrans r')
| .continue none => visitPostContinue cfg r
| .visit r' | .continue (some r') => visitPostContinue cfg (← r.mkEqTrans r')
visitPostContinue (cfg : Config) (r : Result) : SimpM Result := do
let mut r := r
unless cfg.singlePass || e == r.expr do
r ← r.mkEqTrans (← simpLoop r.expr)
cacheResult e cfg r
@[export lean_simp]
def simpImpl (e : Expr) : SimpM Result := withIncRecDepth do
checkSystem "simp"
if (← isProof e) then
return { expr := e }
go
where
go : SimpM Result := do
let cfg ← getConfig
if cfg.memoize then
let cache := (← get).cache
if let some result := cache.find? e then
return result
trace[Meta.Tactic.simp.heads] "{repr e.toHeadIndex}"
simpLoop e
@[inline] def withSimpContext (ctx : Context) (x : MetaM α) : MetaM α :=
withConfig (fun c => { c with etaStruct := ctx.config.etaStruct }) <| withReducible x
def main (e : Expr) (ctx : Context) (stats : Stats := {}) (methods : Methods := {}) : MetaM (Result × Stats) := do
let ctx := { ctx with config := (← ctx.config.updateArith), lctxInitIndices := (← getLCtx).numIndices }
withSimpContext ctx do
let (r, s) ← simpMain e methods.toMethodsRef ctx |>.run { stats with }
trace[Meta.Tactic.simp.numSteps] "{s.numSteps}"
return (r, { s with })
where
simpMain (e : Expr) : SimpM Result := withCatchingRuntimeEx do
try
withoutCatchingRuntimeEx <| simp e
catch ex =>
reportDiag (← get).diag
if ex.isRuntime then
throwNestedTacticEx `simp ex
else
throw ex
def dsimpMain (e : Expr) (ctx : Context) (stats : Stats := {}) (methods : Methods := {}) : MetaM (Expr × Stats) := do
withSimpContext ctx do
let (r, s) ← dsimpMain e methods.toMethodsRef ctx |>.run { stats with }
pure (r, { s with })
where
dsimpMain (e : Expr) : SimpM Expr := withCatchingRuntimeEx do
try
withoutCatchingRuntimeEx <| dsimp e
catch ex =>
reportDiag (← get).diag
if ex.isRuntime then
throwNestedTacticEx `simp ex
else
throw ex
end Simp
open Simp (SimprocsArray Stats)
def simp (e : Expr) (ctx : Simp.Context) (simprocs : SimprocsArray := #[]) (discharge? : Option Simp.Discharge := none)
(stats : Stats := {}) : MetaM (Simp.Result × Stats) := do profileitM Exception "simp" (← getOptions) do
match discharge? with
| none => Simp.main e ctx stats (methods := Simp.mkDefaultMethodsCore simprocs)
| some d => Simp.main e ctx stats (methods := Simp.mkMethods simprocs d (wellBehavedDischarge := false))
def dsimp (e : Expr) (ctx : Simp.Context) (simprocs : SimprocsArray := #[])
(stats : Stats := {}) : MetaM (Expr × Stats) := do profileitM Exception "dsimp" (← getOptions) do
Simp.dsimpMain e ctx stats (methods := Simp.mkDefaultMethodsCore simprocs )
/-- See `simpTarget`. This method assumes `mvarId` is not assigned, and we are already using `mvarId`s local context. -/
def simpTargetCore (mvarId : MVarId) (ctx : Simp.Context) (simprocs : SimprocsArray := #[]) (discharge? : Option Simp.Discharge := none)
(mayCloseGoal := true) (stats : Stats := {}) : MetaM (Option MVarId × Stats) := do
let target ← instantiateMVars (← mvarId.getType)
let (r, stats) ← simp target ctx simprocs discharge? stats
if mayCloseGoal && r.expr.isTrue then
match r.proof? with
| some proof => mvarId.assign (← mkOfEqTrue proof)
| none => mvarId.assign (mkConst ``True.intro)
return (none, stats)
else
return (← applySimpResultToTarget mvarId target r, stats)
/--
Simplify the given goal target (aka type). Return `none` if the goal was closed. Return `some mvarId'` otherwise,
where `mvarId'` is the simplified new goal. -/
def simpTarget (mvarId : MVarId) (ctx : Simp.Context) (simprocs : SimprocsArray := #[]) (discharge? : Option Simp.Discharge := none)
(mayCloseGoal := true) (stats : Stats := {}) : MetaM (Option MVarId × Stats) :=
mvarId.withContext do
mvarId.checkNotAssigned `simp
simpTargetCore mvarId ctx simprocs discharge? mayCloseGoal stats
/--
Apply the result `r` for `prop` (which is inhabited by `proof`). Return `none` if the goal was closed. Return `some (proof', prop')`
otherwise, where `proof' : prop'` and `prop'` is the simplified `prop`.
This method assumes `mvarId` is not assigned, and we are already using `mvarId`s local context. -/
def applySimpResultToProp (mvarId : MVarId) (proof : Expr) (prop : Expr) (r : Simp.Result) (mayCloseGoal := true) : MetaM (Option (Expr × Expr)) := do
if mayCloseGoal && r.expr.isFalse then
match r.proof? with
| some eqProof => mvarId.assign (← mkFalseElim (← mvarId.getType) (← mkEqMP eqProof proof))
| none => mvarId.assign (← mkFalseElim (← mvarId.getType) proof)
return none
else
match r.proof? with
| some eqProof => return some ((← mkEqMP eqProof proof), r.expr)
| none =>
if r.expr != prop then
return some ((← mkExpectedTypeHint proof r.expr), r.expr)
else
return some (proof, r.expr)
def applySimpResultToFVarId (mvarId : MVarId) (fvarId : FVarId) (r : Simp.Result) (mayCloseGoal : Bool) : MetaM (Option (Expr × Expr)) := do
let localDecl ← fvarId.getDecl
applySimpResultToProp mvarId (mkFVar fvarId) localDecl.type r mayCloseGoal
/--
Simplify `prop` (which is inhabited by `proof`). Return `none` if the goal was closed. Return `some (proof', prop')`
otherwise, where `proof' : prop'` and `prop'` is the simplified `prop`.
This method assumes `mvarId` is not assigned, and we are already using `mvarId`s local context. -/
def simpStep (mvarId : MVarId) (proof : Expr) (prop : Expr) (ctx : Simp.Context) (simprocs : SimprocsArray := #[]) (discharge? : Option Simp.Discharge := none)
(mayCloseGoal := true) (stats : Stats := {}) : MetaM (Option (Expr × Expr) × Stats) := do
let (r, stats) ← simp prop ctx simprocs discharge? stats
return (← applySimpResultToProp mvarId proof prop r (mayCloseGoal := mayCloseGoal), stats)
def applySimpResultToLocalDeclCore (mvarId : MVarId) (fvarId : FVarId) (r : Option (Expr × Expr)) : MetaM (Option (FVarId × MVarId)) := do
match r with
| none => return none
| some (value, type') =>
let localDecl ← fvarId.getDecl
if localDecl.type != type' then
let mvarId ← mvarId.assert localDecl.userName type' value
let mvarId ← mvarId.tryClear localDecl.fvarId
let (fvarId, mvarId) ← mvarId.intro1P
return some (fvarId, mvarId)
else
return some (fvarId, mvarId)
/--
Simplify `simp` result to the given local declaration. Return `none` if the goal was closed.
This method assumes `mvarId` is not assigned, and we are already using `mvarId`s local context. -/
def applySimpResultToLocalDecl (mvarId : MVarId) (fvarId : FVarId) (r : Simp.Result) (mayCloseGoal : Bool) : MetaM (Option (FVarId × MVarId)) := do
if r.proof?.isNone then
-- New result is definitionally equal to input. Thus, we can avoid creating a new variable if there are dependencies
let mvarId ← mvarId.replaceLocalDeclDefEq fvarId r.expr
if mayCloseGoal && r.expr.isFalse then
mvarId.assign (← mkFalseElim (← mvarId.getType) (mkFVar fvarId))
return none
else
return some (fvarId, mvarId)
else
applySimpResultToLocalDeclCore mvarId fvarId (← applySimpResultToFVarId mvarId fvarId r mayCloseGoal)
def simpLocalDecl (mvarId : MVarId) (fvarId : FVarId) (ctx : Simp.Context) (simprocs : SimprocsArray := #[]) (discharge? : Option Simp.Discharge := none)
(mayCloseGoal := true) (stats : Stats := {}) : MetaM (Option (FVarId × MVarId) × Stats) := do
mvarId.withContext do
mvarId.checkNotAssigned `simp
let type ← instantiateMVars (← fvarId.getType)
let (r, stats) ← simpStep mvarId (mkFVar fvarId) type ctx simprocs discharge? mayCloseGoal stats
return (← applySimpResultToLocalDeclCore mvarId fvarId r, stats)
def simpGoal (mvarId : MVarId) (ctx : Simp.Context) (simprocs : SimprocsArray := #[]) (discharge? : Option Simp.Discharge := none)
(simplifyTarget : Bool := true) (fvarIdsToSimp : Array FVarId := #[])
(stats : Stats := {}) : MetaM (Option (Array FVarId × MVarId) × Stats) := do
mvarId.withContext do
mvarId.checkNotAssigned `simp
let mut mvarIdNew := mvarId
let mut toAssert := #[]
let mut replaced := #[]
let mut stats := stats
for fvarId in fvarIdsToSimp do
let localDecl ← fvarId.getDecl
let type ← instantiateMVars localDecl.type
let ctx := { ctx with simpTheorems := ctx.simpTheorems.eraseTheorem (.fvar localDecl.fvarId) }
let (r, stats') ← simp type ctx simprocs discharge? stats
stats := stats'
match r.proof? with
| some _ => match (← applySimpResultToProp mvarIdNew (mkFVar fvarId) type r) with
| none => return (none, stats)
| some (value, type) => toAssert := toAssert.push { userName := localDecl.userName, type := type, value := value }
| none =>
if r.expr.isFalse then
mvarIdNew.assign (← mkFalseElim (← mvarIdNew.getType) (mkFVar fvarId))
return (none, stats)
-- TODO: if there are no forwards dependencies we may consider using the same approach we used when `r.proof?` is a `some ...`
-- Reason: it introduces a `mkExpectedTypeHint`
mvarIdNew ← mvarIdNew.replaceLocalDeclDefEq fvarId r.expr
replaced := replaced.push fvarId
if simplifyTarget then
match (← simpTarget mvarIdNew ctx simprocs discharge? (stats := stats)) with
| (none, stats') => return (none, stats')
| (some mvarIdNew', stats') => mvarIdNew := mvarIdNew'; stats := stats'
let (fvarIdsNew, mvarIdNew') ← mvarIdNew.assertHypotheses toAssert
mvarIdNew := mvarIdNew'
let toClear := fvarIdsToSimp.filter fun fvarId => !replaced.contains fvarId
mvarIdNew ← mvarIdNew.tryClearMany toClear
if ctx.config.failIfUnchanged && mvarId == mvarIdNew then
throwError "simp made no progress"
return (some (fvarIdsNew, mvarIdNew), stats)
def simpTargetStar (mvarId : MVarId) (ctx : Simp.Context) (simprocs : SimprocsArray := #[]) (discharge? : Option Simp.Discharge := none)
(stats : Stats := {}) : MetaM (TacticResultCNM × Stats) := mvarId.withContext do
let mut ctx := ctx
for h in (← getPropHyps) do
let localDecl ← h.getDecl
let proof := localDecl.toExpr
let simpTheorems ← ctx.simpTheorems.addTheorem (.fvar h) proof
ctx := { ctx with simpTheorems }
match (← simpTarget mvarId ctx simprocs discharge? (stats := stats)) with
| (none, stats) => return (TacticResultCNM.closed, stats)
| (some mvarId', stats') =>
if (← mvarId.getType) == (← mvarId'.getType) then
return (TacticResultCNM.noChange, stats)
else
return (TacticResultCNM.modified mvarId', stats')
def dsimpGoal (mvarId : MVarId) (ctx : Simp.Context) (simprocs : SimprocsArray := #[]) (simplifyTarget : Bool := true) (fvarIdsToSimp : Array FVarId := #[])
(stats : Stats := {}) : MetaM (Option MVarId × Stats) := do
mvarId.withContext do
mvarId.checkNotAssigned `simp
let mut mvarIdNew := mvarId
let mut stats : Stats := stats
for fvarId in fvarIdsToSimp do
let type ← instantiateMVars (← fvarId.getType)
let (typeNew, stats') ← dsimp type ctx simprocs
stats := stats'
if typeNew.isFalse then
mvarIdNew.assign (← mkFalseElim (← mvarIdNew.getType) (mkFVar fvarId))
return (none, stats)
if typeNew != type then
mvarIdNew ← mvarIdNew.replaceLocalDeclDefEq fvarId typeNew
if simplifyTarget then
let target ← mvarIdNew.getType
let (targetNew, stats') ← dsimp target ctx simprocs stats
stats := stats'
if targetNew.isTrue then
mvarIdNew.assign (mkConst ``True.intro)
return (none, stats)
if let some (_, lhs, rhs) := targetNew.consumeMData.eq? then
if (← withReducible <| isDefEq lhs rhs) then
mvarIdNew.assign (← mkEqRefl lhs)
return (none, stats)
if target != targetNew then
mvarIdNew ← mvarIdNew.replaceTargetDefEq targetNew
pure () -- FIXME: bug in do notation if this is removed?
if ctx.config.failIfUnchanged && mvarId == mvarIdNew then
throwError "dsimp made no progress"
return (some mvarIdNew, stats)
end Lean.Meta