-
Notifications
You must be signed in to change notification settings - Fork 546
/
Copy pathNotationExtra.lean
450 lines (360 loc) · 17.9 KB
/
NotationExtra.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
/-
Copyright (c) 2020 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
Extra notation that depends on Init/Meta
-/
prelude
import Init.Data.ToString.Basic
import Init.Data.Array.Subarray
import Init.Conv
import Init.Meta
namespace Lean
-- Auxiliary parsers and functions for declaring notation with binders
syntax unbracketedExplicitBinders := (ppSpace binderIdent)+ (" : " term)?
syntax bracketedExplicitBinders := "(" withoutPosition((binderIdent ppSpace)+ ": " term) ")"
syntax explicitBinders := (ppSpace bracketedExplicitBinders)+ <|> unbracketedExplicitBinders
open TSyntax.Compat in
def expandExplicitBindersAux (combinator : Syntax) (idents : Array Syntax) (type? : Option Syntax) (body : Syntax) : MacroM Syntax :=
let rec loop (i : Nat) (acc : Syntax) := do
match i with
| 0 => pure acc
| i+1 =>
let ident := idents[i]![0]
let acc ← match ident.isIdent, type? with
| true, none => `($combinator fun $ident => $acc)
| true, some type => `($combinator fun $ident : $type => $acc)
| false, none => `($combinator fun _ => $acc)
| false, some type => `($combinator fun _ : $type => $acc)
loop i acc
loop idents.size body
def expandBrackedBindersAux (combinator : Syntax) (binders : Array Syntax) (body : Syntax) : MacroM Syntax :=
let rec loop (i : Nat) (acc : Syntax) := do
match i with
| 0 => pure acc
| i+1 =>
let idents := binders[i]![1].getArgs
let type := binders[i]![3]
loop i (← expandExplicitBindersAux combinator idents (some type) acc)
loop binders.size body
def expandExplicitBinders (combinatorDeclName : Name) (explicitBinders : Syntax) (body : Syntax) : MacroM Syntax := do
let combinator := mkCIdentFrom (← getRef) combinatorDeclName
let explicitBinders := explicitBinders[0]
if explicitBinders.getKind == ``Lean.unbracketedExplicitBinders then
let idents := explicitBinders[0].getArgs
let type? := if explicitBinders[1].isNone then none else some explicitBinders[1][1]
expandExplicitBindersAux combinator idents type? body
else if explicitBinders.getArgs.all (·.getKind == ``Lean.bracketedExplicitBinders) then
expandBrackedBindersAux combinator explicitBinders.getArgs body
else
Macro.throwError "unexpected explicit binder"
def expandBrackedBinders (combinatorDeclName : Name) (bracketedExplicitBinders : Syntax) (body : Syntax) : MacroM Syntax := do
let combinator := mkCIdentFrom (← getRef) combinatorDeclName
expandBrackedBindersAux combinator #[bracketedExplicitBinders] body
syntax unifConstraint := term patternIgnore(" =?= " <|> " ≟ ") term
syntax unifConstraintElem := colGe unifConstraint ", "?
syntax (docComment)? attrKind "unif_hint" (ppSpace ident)? (ppSpace bracketedBinder)*
" where " withPosition(unifConstraintElem*) patternIgnore(atomic("|" noWs "-") <|> "⊢") unifConstraint : command
macro_rules
| `($[$doc?:docComment]? $kind:attrKind unif_hint $(n)? $bs* where $[$cs₁ ≟ $cs₂]* |- $t₁ ≟ $t₂) => do
let mut body ← `($t₁ = $t₂)
for (c₁, c₂) in cs₁.zip cs₂ |>.reverse do
body ← `($c₁ = $c₂ → $body)
let hint : Ident ← `(hint)
`($[$doc?:docComment]? @[$kind unification_hint] def $(n.getD hint) $bs* : Sort _ := $body)
end Lean
open Lean
section
open TSyntax.Compat
macro "∃" xs:explicitBinders ", " b:term : term => expandExplicitBinders ``Exists xs b
macro "exists" xs:explicitBinders ", " b:term : term => expandExplicitBinders ``Exists xs b
macro "Σ" xs:explicitBinders ", " b:term : term => expandExplicitBinders ``Sigma xs b
macro "Σ'" xs:explicitBinders ", " b:term : term => expandExplicitBinders ``PSigma xs b
macro:35 xs:bracketedExplicitBinders " × " b:term:35 : term => expandBrackedBinders ``Sigma xs b
macro:35 xs:bracketedExplicitBinders " ×' " b:term:35 : term => expandBrackedBinders ``PSigma xs b
end
namespace Lean
-- first step of a `calc` block
syntax calcFirstStep := ppIndent(colGe term (" := " term)?)
-- enforce indentation of calc steps so we know when to stop parsing them
syntax calcStep := ppIndent(colGe term " := " term)
syntax calcSteps := ppLine withPosition(calcFirstStep) withPosition((ppLine linebreak calcStep)*)
/-- Step-wise reasoning over transitive relations.
```
calc
a = b := pab
b = c := pbc
...
y = z := pyz
```
proves `a = z` from the given step-wise proofs. `=` can be replaced with any
relation implementing the typeclass `Trans`. Instead of repeating the right-
hand sides, subsequent left-hand sides can be replaced with `_`.
```
calc
a = b := pab
_ = c := pbc
...
_ = z := pyz
```
It is also possible to write the *first* relation as `<lhs>\n _ = <rhs> :=
<proof>`. This is useful for aligning relation symbols, especially on longer:
identifiers:
```
calc abc
_ = bce := pabce
_ = cef := pbcef
...
_ = xyz := pwxyz
```
`calc` works as a term, as a tactic or as a `conv` tactic.
See [Theorem Proving in Lean 4][tpil4] for more information.
[tpil4]: https://lean-lang.org/theorem_proving_in_lean4/quantifiers_and_equality.html#calculational-proofs
-/
syntax (name := calc) "calc" calcSteps : term
@[inherit_doc «calc»]
syntax (name := calcTactic) "calc" calcSteps : tactic
@[inherit_doc «calc»]
macro tk:"calc" steps:calcSteps : conv =>
`(conv| tactic => calc%$tk $steps)
end Lean
@[app_unexpander Unit.unit] def unexpandUnit : Lean.PrettyPrinter.Unexpander
| `($(_)) => `(())
@[app_unexpander List.nil] def unexpandListNil : Lean.PrettyPrinter.Unexpander
| `($(_)) => `([])
@[app_unexpander List.cons] def unexpandListCons : Lean.PrettyPrinter.Unexpander
| `($(_) $x $tail) =>
match tail with
| `([]) => `([$x])
| `([$xs,*]) => `([$x, $xs,*])
| `(⋯) => `([$x, $tail]) -- Unexpands to `[x, y, z, ⋯]` for `⋯ : List α`
| _ => throw ()
| _ => throw ()
@[app_unexpander List.toArray] def unexpandListToArray : Lean.PrettyPrinter.Unexpander
| `($(_) [$xs,*]) => `(#[$xs,*])
| _ => throw ()
@[app_unexpander Prod.mk] def unexpandProdMk : Lean.PrettyPrinter.Unexpander
| `($(_) $x ($y, $ys,*)) => `(($x, $y, $ys,*))
| `($(_) $x $y) => `(($x, $y))
| _ => throw ()
@[app_unexpander PProd.mk] def unexpandPProdMk : Lean.PrettyPrinter.Unexpander
| `($(_) $x ($y, $ys,*)ₚ) => `(($x, $y, $ys,*)ₚ)
| `($(_) $x $y) => `(($x, $y)ₚ)
| _ => throw ()
@[app_unexpander MProd.mk] def unexpandMProdMk : Lean.PrettyPrinter.Unexpander
| `($(_) $x ($y, $ys,*)ₘ) => `(($x, $y, $ys,*)ₘ)
| `($(_) $x $y) => `(($x, $y)ₘ)
| _ => throw ()
@[app_unexpander ite] def unexpandIte : Lean.PrettyPrinter.Unexpander
| `($(_) $c $t $e) => `(if $c then $t else $e)
| _ => throw ()
@[app_unexpander sorryAx] def unexpandSorryAx : Lean.PrettyPrinter.Unexpander
| `($(_) _) => `(sorry)
| `($(_) _ _) => `(sorry)
| _ => throw ()
@[app_unexpander Eq.ndrec] def unexpandEqNDRec : Lean.PrettyPrinter.Unexpander
| `($(_) $m $h) => `($h ▸ $m)
| _ => throw ()
@[app_unexpander Eq.rec] def unexpandEqRec : Lean.PrettyPrinter.Unexpander
| `($(_) $m $h) => `($h ▸ $m)
| _ => throw ()
@[app_unexpander Exists] def unexpandExists : Lean.PrettyPrinter.Unexpander
| `($(_) fun $x:ident => ∃ $xs:binderIdent*, $b) => `(∃ $x:ident $xs:binderIdent*, $b)
| `($(_) fun $x:ident => $b) => `(∃ $x:ident, $b)
| `($(_) fun ($x:ident : $t) => $b) => `(∃ ($x:ident : $t), $b)
| _ => throw ()
@[app_unexpander Sigma] def unexpandSigma : Lean.PrettyPrinter.Unexpander
| `($(_) fun ($x:ident : $t) => $b) => `(($x:ident : $t) × $b)
| _ => throw ()
@[app_unexpander PSigma] def unexpandPSigma : Lean.PrettyPrinter.Unexpander
| `($(_) fun ($x:ident : $t) => $b) => `(($x:ident : $t) ×' $b)
| _ => throw ()
@[app_unexpander Subtype] def unexpandSubtype : Lean.PrettyPrinter.Unexpander
| `($(_) fun ($x:ident : $type) => $p) => `({ $x : $type // $p })
| `($(_) fun $x:ident => $p) => `({ $x // $p })
| _ => throw ()
@[app_unexpander TSyntax] def unexpandTSyntax : Lean.PrettyPrinter.Unexpander
| `($f [$k]) => `($f $k)
| _ => throw ()
@[app_unexpander TSyntaxArray] def unexpandTSyntaxArray : Lean.PrettyPrinter.Unexpander
| `($f [$k]) => `($f $k)
| _ => throw ()
@[app_unexpander Syntax.TSepArray] def unexpandTSepArray : Lean.PrettyPrinter.Unexpander
| `($f [$k] $sep) => `($f $k $sep)
| _ => throw ()
@[app_unexpander GetElem.getElem] def unexpandGetElem : Lean.PrettyPrinter.Unexpander
| `($_ $array $index $_) => `($array[$index])
| _ => throw ()
@[app_unexpander getElem!] def unexpandGetElem! : Lean.PrettyPrinter.Unexpander
| `($_ $array $index) => `($array[$index]!)
| _ => throw ()
@[app_unexpander getElem?] def unexpandGetElem? : Lean.PrettyPrinter.Unexpander
| `($_ $array $index) => `($array[$index]?)
| _ => throw ()
@[app_unexpander Name.mkStr1] def unexpandMkStr1 : Lean.PrettyPrinter.Unexpander
| `($(_) $a:str) => return mkNode `Lean.Parser.Term.quotedName #[Syntax.mkNameLit ("`" ++ a.getString)]
| _ => throw ()
@[app_unexpander Name.mkStr2] def unexpandMkStr2 : Lean.PrettyPrinter.Unexpander
| `($(_) $a1:str $a2:str) => return mkNode `Lean.Parser.Term.quotedName #[Syntax.mkNameLit ("`" ++ a1.getString ++ "." ++ a2.getString)]
| _ => throw ()
@[app_unexpander Name.mkStr3] def unexpandMkStr3 : Lean.PrettyPrinter.Unexpander
| `($(_) $a1:str $a2:str $a3:str) => return mkNode `Lean.Parser.Term.quotedName #[Syntax.mkNameLit ("`" ++ a1.getString ++ "." ++ a2.getString ++ "." ++ a3.getString)]
| _ => throw ()
@[app_unexpander Name.mkStr4] def unexpandMkStr4 : Lean.PrettyPrinter.Unexpander
| `($(_) $a1:str $a2:str $a3:str $a4:str) => return mkNode `Lean.Parser.Term.quotedName #[Syntax.mkNameLit ("`" ++ a1.getString ++ "." ++ a2.getString ++ "." ++ a3.getString ++ "." ++ a4.getString)]
| _ => throw ()
@[app_unexpander Name.mkStr5] def unexpandMkStr5 : Lean.PrettyPrinter.Unexpander
| `($(_) $a1:str $a2:str $a3:str $a4:str $a5:str) => return mkNode `Lean.Parser.Term.quotedName #[Syntax.mkNameLit ("`" ++ a1.getString ++ "." ++ a2.getString ++ "." ++ a3.getString ++ "." ++ a4.getString ++ "." ++ a5.getString)]
| _ => throw ()
@[app_unexpander Name.mkStr6] def unexpandMkStr6 : Lean.PrettyPrinter.Unexpander
| `($(_) $a1:str $a2:str $a3:str $a4:str $a5:str $a6:str) => return mkNode `Lean.Parser.Term.quotedName #[Syntax.mkNameLit ("`" ++ a1.getString ++ "." ++ a2.getString ++ "." ++ a3.getString ++ "." ++ a4.getString ++ "." ++ a5.getString ++ "." ++ a6.getString)]
| _ => throw ()
@[app_unexpander Name.mkStr7] def unexpandMkStr7 : Lean.PrettyPrinter.Unexpander
| `($(_) $a1:str $a2:str $a3:str $a4:str $a5:str $a6:str $a7:str) => return mkNode `Lean.Parser.Term.quotedName #[Syntax.mkNameLit ("`" ++ a1.getString ++ "." ++ a2.getString ++ "." ++ a3.getString ++ "." ++ a4.getString ++ "." ++ a5.getString ++ "." ++ a6.getString ++ "." ++ a7.getString)]
| _ => throw ()
@[app_unexpander Name.mkStr8] def unexpandMkStr8 : Lean.PrettyPrinter.Unexpander
| `($(_) $a1:str $a2:str $a3:str $a4:str $a5:str $a6:str $a7:str $a8:str) => return mkNode `Lean.Parser.Term.quotedName #[Syntax.mkNameLit ("`" ++ a1.getString ++ "." ++ a2.getString ++ "." ++ a3.getString ++ "." ++ a4.getString ++ "." ++ a5.getString ++ "." ++ a6.getString ++ "." ++ a7.getString ++ "." ++ a8.getString)]
| _ => throw ()
@[app_unexpander Array.empty] def unexpandArrayEmpty : Lean.PrettyPrinter.Unexpander
| _ => `(#[])
@[app_unexpander Array.mkArray0] def unexpandMkArray0 : Lean.PrettyPrinter.Unexpander
| _ => `(#[])
@[app_unexpander Array.mkArray1] def unexpandMkArray1 : Lean.PrettyPrinter.Unexpander
| `($(_) $a1) => `(#[$a1])
| _ => throw ()
@[app_unexpander Array.mkArray2] def unexpandMkArray2 : Lean.PrettyPrinter.Unexpander
| `($(_) $a1 $a2) => `(#[$a1, $a2])
| _ => throw ()
@[app_unexpander Array.mkArray3] def unexpandMkArray3 : Lean.PrettyPrinter.Unexpander
| `($(_) $a1 $a2 $a3) => `(#[$a1, $a2, $a3])
| _ => throw ()
@[app_unexpander Array.mkArray4] def unexpandMkArray4 : Lean.PrettyPrinter.Unexpander
| `($(_) $a1 $a2 $a3 $a4) => `(#[$a1, $a2, $a3, $a4])
| _ => throw ()
@[app_unexpander Array.mkArray5] def unexpandMkArray5 : Lean.PrettyPrinter.Unexpander
| `($(_) $a1 $a2 $a3 $a4 $a5) => `(#[$a1, $a2, $a3, $a4, $a5])
| _ => throw ()
@[app_unexpander Array.mkArray6] def unexpandMkArray6 : Lean.PrettyPrinter.Unexpander
| `($(_) $a1 $a2 $a3 $a4 $a5 $a6) => `(#[$a1, $a2, $a3, $a4, $a5, $a6])
| _ => throw ()
@[app_unexpander Array.mkArray7] def unexpandMkArray7 : Lean.PrettyPrinter.Unexpander
| `($(_) $a1 $a2 $a3 $a4 $a5 $a6 $a7) => `(#[$a1, $a2, $a3, $a4, $a5, $a6, $a7])
| _ => throw ()
@[app_unexpander Array.mkArray8] def unexpandMkArray8 : Lean.PrettyPrinter.Unexpander
| `($(_) $a1 $a2 $a3 $a4 $a5 $a6 $a7 $a8) => `(#[$a1, $a2, $a3, $a4, $a5, $a6, $a7, $a8])
| _ => throw ()
/--
Apply function extensionality and introduce new hypotheses.
The tactic `funext` will keep applying the `funext` lemma until the goal target is not reducible to
```
|- ((fun x => ...) = (fun x => ...))
```
The variant `funext h₁ ... hₙ` applies `funext` `n` times, and uses the given identifiers to name the new hypotheses.
Patterns can be used like in the `intro` tactic. Example, given a goal
```
|- ((fun x : Nat × Bool => ...) = (fun x => ...))
```
`funext (a, b)` applies `funext` once and performs pattern matching on the newly introduced pair.
-/
syntax "funext" (ppSpace colGt term:max)* : tactic
macro_rules
| `(tactic|funext) => `(tactic| repeat (apply funext; intro))
| `(tactic|funext $x) => `(tactic| apply funext; intro $x:term)
| `(tactic|funext $x $xs*) => `(tactic| apply funext; intro $x:term; funext $xs*)
macro_rules
| `(%[ $[$x],* | $k ]) =>
if x.size < 8 then
x.foldrM (β := Term) (init := k) fun x k =>
`(List.cons $x $k)
else
let m := x.size / 2
let y := x[m:]
let z := x[:m]
`(let y := %[ $[$y],* | $k ]
%[ $[$z],* | y ])
/--
Expands
```
class abbrev C <params> := D_1, ..., D_n
```
into
```
class C <params> extends D_1, ..., D_n
attribute [instance] C.mk
```
-/
syntax (name := Lean.Parser.Command.classAbbrev)
declModifiers "class " "abbrev " declId bracketedBinder* (":" term)?
":=" withPosition(group(colGe term ","?)*) : command
macro_rules
| `($mods:declModifiers class abbrev $id $params* $[: $ty]? := $[ $parents $[,]? ]*) =>
let ctor := mkIdentFrom id <| id.raw[0].getId.modifyBase (. ++ `mk)
`($mods:declModifiers class $id $params* extends $parents,* $[: $ty]?
attribute [instance] $ctor)
macro_rules
| `(haveI $hy:hygieneInfo $bs* $[: $ty]? := $val; $body) =>
`(haveI $(HygieneInfo.mkIdent hy `this (canonical := true)) $bs* $[: $ty]? := $val; $body)
| `(haveI _ $bs* := $val; $body) => `(haveI x $bs* : _ := $val; $body)
| `(haveI _ $bs* : $ty := $val; $body) => `(haveI x $bs* : $ty := $val; $body)
| `(haveI $x:ident $bs* := $val; $body) => `(haveI $x $bs* : _ := $val; $body)
| `(haveI $_:ident $_* : $_ := $_; $_) => Lean.Macro.throwUnsupported -- handled by elab
macro_rules
| `(letI $hy:hygieneInfo $bs* $[: $ty]? := $val; $body) =>
`(letI $(HygieneInfo.mkIdent hy `this (canonical := true)) $bs* $[: $ty]? := $val; $body)
| `(letI _ $bs* := $val; $body) => `(letI x $bs* : _ := $val; $body)
| `(letI _ $bs* : $ty := $val; $body) => `(letI x $bs* : $ty := $val; $body)
| `(letI $x:ident $bs* := $val; $body) => `(letI $x $bs* : _ := $val; $body)
| `(letI $_:ident $_* : $_ := $_; $_) => Lean.Macro.throwUnsupported -- handled by elab
namespace Lean
syntax cdotTk := patternIgnore("· " <|> ". ")
/-- `· tac` focuses on the main goal and tries to solve it using `tac`, or else fails. -/
syntax (name := cdot) cdotTk tacticSeqIndentGt : tactic
/--
Similar to `first`, but succeeds only if one the given tactics solves the current goal.
-/
syntax (name := solveTactic) "solve" withPosition((ppDedent(ppLine) colGe "| " tacticSeq)+) : tactic
macro_rules
| `(tactic| solve $[| $ts]* ) => `(tactic| focus first $[| ($ts); done]*)
/-! # `repeat` and `while` notation -/
inductive Loop where
| mk
@[inline]
partial def Loop.forIn {β : Type u} {m : Type u → Type v} [Monad m] (_ : Loop) (init : β) (f : Unit → β → m (ForInStep β)) : m β :=
let rec @[specialize] loop (b : β) : m β := do
match ← f () b with
| ForInStep.done b => pure b
| ForInStep.yield b => loop b
loop init
instance : ForIn m Loop Unit where
forIn := Loop.forIn
syntax "repeat " doSeq : doElem
macro_rules
| `(doElem| repeat $seq) => `(doElem| for _ in Loop.mk do $seq)
syntax "while " ident " : " termBeforeDo " do " doSeq : doElem
macro_rules
| `(doElem| while $h : $cond do $seq) => `(doElem| repeat if $h : $cond then $seq else break)
syntax "while " termBeforeDo " do " doSeq : doElem
macro_rules
| `(doElem| while $cond do $seq) => `(doElem| repeat if $cond then $seq else break)
syntax "repeat " doSeq ppDedent(ppLine) "until " term : doElem
macro_rules
| `(doElem| repeat $seq until $cond) => `(doElem| repeat do $seq:doSeq; if $cond then break)
macro:50 e:term:51 " matches " p:sepBy1(term:51, " | ") : term =>
`(((match $e:term with | $[$p:term]|* => true | _ => false) : Bool))
end Lean
syntax "{" term,+ "}" : term
macro_rules
| `({$x:term}) => `(singleton $x)
| `({$x:term, $xs:term,*}) => `(insert $x {$xs:term,*})
namespace Lean
/-- Unexpander for the `{ x }` notation. -/
@[app_unexpander singleton]
def singletonUnexpander : Lean.PrettyPrinter.Unexpander
| `($_ $a) => `({ $a:term })
| _ => throw ()
/-- Unexpander for the `{ x, y, ... }` notation. -/
@[app_unexpander insert]
def insertUnexpander : Lean.PrettyPrinter.Unexpander
| `($_ $a { $ts:term,* }) => `({$a:term, $ts,*})
| _ => throw ()
end Lean