-
Notifications
You must be signed in to change notification settings - Fork 546
/
Copy pathLemmas.lean
487 lines (369 loc) · 18.2 KB
/
Lemmas.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
/-
Copyright (c) 2024 Lean FRO, LLC. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Markus Himmel
-/
prelude
import Std.Data.DHashMap.Lemmas
import Std.Data.HashMap.Basic
/-!
# Hash map lemmas
This module contains lemmas about `Std.Data.HashMap`. Most of the lemmas require
`EquivBEq α` and `LawfulHashable α` for the key type `α`. The easiest way to obtain these instances
is to provide an instance of `LawfulBEq α`.
-/
set_option linter.missingDocs true
set_option autoImplicit false
universe u v
variable {α : Type u} {β : Type v} {_ : BEq α} {_ : Hashable α}
namespace Std.HashMap
section
variable {m : HashMap α β}
private theorem ext {m m' : HashMap α β} : m.inner = m'.inner → m = m' := by
cases m; cases m'; rintro rfl; rfl
@[simp]
theorem isEmpty_empty {c} : (empty c : HashMap α β).isEmpty :=
DHashMap.isEmpty_empty
@[simp]
theorem isEmpty_emptyc : (∅ : HashMap α β).isEmpty :=
DHashMap.isEmpty_emptyc
@[simp]
theorem isEmpty_insert [EquivBEq α] [LawfulHashable α] {k : α} {v : β} :
(m.insert k v).isEmpty = false :=
DHashMap.isEmpty_insert
theorem mem_iff_contains {a : α} : a ∈ m ↔ m.contains a :=
DHashMap.mem_iff_contains
theorem contains_congr [EquivBEq α] [LawfulHashable α] {a b : α} (hab : a == b) :
m.contains a = m.contains b :=
DHashMap.contains_congr hab
theorem mem_congr [EquivBEq α] [LawfulHashable α] {a b : α} (hab : a == b) :
a ∈ m ↔ b ∈ m :=
DHashMap.mem_congr hab
@[simp] theorem contains_empty {a : α} {c} : (empty c : HashMap α β).contains a = false :=
DHashMap.contains_empty
@[simp] theorem get_eq_getElem {a : α} {h} : get m a h = m[a]'h := rfl
@[simp] theorem get?_eq_getElem? {a : α} : get? m a = m[a]? := rfl
@[simp] theorem get!_eq_getElem! [Inhabited β] {a : α} : get! m a = m[a]! := rfl
@[simp] theorem not_mem_empty {a : α} {c} : ¬a ∈ (empty c : HashMap α β) :=
DHashMap.not_mem_empty
@[simp] theorem contains_emptyc {a : α} : (∅ : HashMap α β).contains a = false :=
DHashMap.contains_emptyc
@[simp] theorem not_mem_emptyc {a : α} : ¬a ∈ (∅ : HashMap α β) :=
DHashMap.not_mem_emptyc
theorem contains_of_isEmpty [EquivBEq α] [LawfulHashable α] {a : α} :
m.isEmpty → m.contains a = false :=
DHashMap.contains_of_isEmpty
theorem not_mem_of_isEmpty [EquivBEq α] [LawfulHashable α] {a : α} :
m.isEmpty → ¬a ∈ m :=
DHashMap.not_mem_of_isEmpty
theorem isEmpty_eq_false_iff_exists_contains_eq_true [EquivBEq α] [LawfulHashable α] :
m.isEmpty = false ↔ ∃ a, m.contains a = true :=
DHashMap.isEmpty_eq_false_iff_exists_contains_eq_true
theorem isEmpty_eq_false_iff_exists_mem [EquivBEq α] [LawfulHashable α] :
m.isEmpty = false ↔ ∃ a, a ∈ m :=
DHashMap.isEmpty_eq_false_iff_exists_mem
theorem isEmpty_iff_forall_contains [EquivBEq α] [LawfulHashable α] :
m.isEmpty = true ↔ ∀ a, m.contains a = false :=
DHashMap.isEmpty_iff_forall_contains
theorem isEmpty_iff_forall_not_mem [EquivBEq α] [LawfulHashable α] :
m.isEmpty = true ↔ ∀ a, ¬a ∈ m :=
DHashMap.isEmpty_iff_forall_not_mem
@[simp]
theorem contains_insert [EquivBEq α] [LawfulHashable α] {k a : α} {v : β} :
(m.insert k v).contains a = (k == a || m.contains a) :=
DHashMap.contains_insert
@[simp]
theorem mem_insert [EquivBEq α] [LawfulHashable α] {k a : α} {v : β} :
a ∈ m.insert k v ↔ k == a ∨ a ∈ m :=
DHashMap.mem_insert
theorem contains_of_contains_insert [EquivBEq α] [LawfulHashable α] {k a : α} {v : β} :
(m.insert k v).contains a → (k == a) = false → m.contains a :=
DHashMap.contains_of_contains_insert
theorem mem_of_mem_insert [EquivBEq α] [LawfulHashable α] {k a : α} {v : β} :
a ∈ m.insert k v → (k == a) = false → a ∈ m :=
DHashMap.mem_of_mem_insert
@[simp]
theorem contains_insert_self [EquivBEq α] [LawfulHashable α] {k : α} {v : β} :
(m.insert k v).contains k :=
DHashMap.contains_insert_self
@[simp]
theorem mem_insert_self [EquivBEq α] [LawfulHashable α] {k : α} {v : β} : k ∈ m.insert k v :=
DHashMap.mem_insert_self
@[simp]
theorem size_empty {c} : (empty c : HashMap α β).size = 0 :=
DHashMap.size_empty
@[simp]
theorem size_emptyc : (∅ : HashMap α β).size = 0 :=
DHashMap.size_emptyc
theorem isEmpty_eq_size_eq_zero : m.isEmpty = (m.size == 0) :=
DHashMap.isEmpty_eq_size_eq_zero
theorem size_insert [EquivBEq α] [LawfulHashable α] {k : α} {v : β} :
(m.insert k v).size = bif m.contains k then m.size else m.size + 1 :=
DHashMap.size_insert
theorem size_le_size_insert [EquivBEq α] [LawfulHashable α] {k : α} {v : β} :
m.size ≤ (m.insert k v).size :=
DHashMap.size_le_size_insert
theorem size_insert_le [EquivBEq α] [LawfulHashable α] {k : α} {v : β} :
(m.insert k v).size ≤ m.size + 1 :=
DHashMap.size_insert_le
@[simp]
theorem erase_empty {a : α} {c : Nat} : (empty c : HashMap α β).erase a = empty c :=
ext DHashMap.erase_empty
@[simp]
theorem erase_emptyc {a : α} : (∅ : HashMap α β).erase a = ∅ :=
ext DHashMap.erase_emptyc
@[simp]
theorem isEmpty_erase [EquivBEq α] [LawfulHashable α] {k : α} :
(m.erase k).isEmpty = (m.isEmpty || (m.size == 1 && m.contains k)) :=
DHashMap.isEmpty_erase
@[simp]
theorem contains_erase [EquivBEq α] [LawfulHashable α] {k a : α} :
(m.erase k).contains a = (!(k == a) && m.contains a) :=
DHashMap.contains_erase
@[simp]
theorem mem_erase [EquivBEq α] [LawfulHashable α] {k a : α} :
a ∈ m.erase k ↔ (k == a) = false ∧ a ∈ m :=
DHashMap.mem_erase
theorem contains_of_contains_erase [EquivBEq α] [LawfulHashable α] {k a : α} :
(m.erase k).contains a → m.contains a :=
DHashMap.contains_of_contains_erase
theorem mem_of_mem_erase [EquivBEq α] [LawfulHashable α] {k a : α} : a ∈ m.erase k → a ∈ m :=
DHashMap.mem_of_mem_erase
theorem size_erase [EquivBEq α] [LawfulHashable α] {k : α} :
(m.erase k).size = bif m.contains k then m.size - 1 else m.size :=
DHashMap.size_erase
theorem size_erase_le [EquivBEq α] [LawfulHashable α] {k : α} : (m.erase k).size ≤ m.size :=
DHashMap.size_erase_le
theorem size_le_size_erase [EquivBEq α] [LawfulHashable α] {k : α} :
m.size ≤ (m.erase k).size + 1 :=
DHashMap.size_le_size_erase
@[simp]
theorem containsThenInsert_fst {k : α} {v : β} : (m.containsThenInsert k v).1 = m.contains k :=
DHashMap.containsThenInsert_fst
@[simp]
theorem containsThenInsert_snd {k : α} {v : β} : (m.containsThenInsert k v).2 = m.insert k v :=
ext (DHashMap.containsThenInsert_snd)
@[simp]
theorem containsThenInsertIfNew_fst {k : α} {v : β} :
(m.containsThenInsertIfNew k v).1 = m.contains k :=
DHashMap.containsThenInsertIfNew_fst
@[simp]
theorem containsThenInsertIfNew_snd {k : α} {v : β} :
(m.containsThenInsertIfNew k v).2 = m.insertIfNew k v :=
ext DHashMap.containsThenInsertIfNew_snd
@[simp]
theorem getElem?_empty {a : α} {c} : (empty c : HashMap α β)[a]? = none :=
DHashMap.Const.get?_empty
@[simp]
theorem getElem?_emptyc {a : α} : (∅ : HashMap α β)[a]? = none :=
DHashMap.Const.get?_emptyc
theorem getElem?_of_isEmpty [EquivBEq α] [LawfulHashable α] {a : α} :
m.isEmpty = true → m[a]? = none :=
DHashMap.Const.get?_of_isEmpty
theorem getElem?_insert [EquivBEq α] [LawfulHashable α] {k a : α} {v : β} :
(m.insert k v)[a]? = bif k == a then some v else m[a]? :=
DHashMap.Const.get?_insert
@[simp]
theorem getElem?_insert_self [EquivBEq α] [LawfulHashable α] {k : α} {v : β} :
(m.insert k v)[k]? = some v :=
DHashMap.Const.get?_insert_self
theorem contains_eq_isSome_getElem? [EquivBEq α] [LawfulHashable α] {a : α} :
m.contains a = m[a]?.isSome :=
DHashMap.Const.contains_eq_isSome_get?
theorem getElem?_eq_none_of_contains_eq_false [EquivBEq α] [LawfulHashable α] {a : α} :
m.contains a = false → m[a]? = none :=
DHashMap.Const.get?_eq_none_of_contains_eq_false
theorem getElem?_eq_none [EquivBEq α] [LawfulHashable α] {a : α} : ¬a ∈ m → m[a]? = none :=
DHashMap.Const.get?_eq_none
theorem getElem?_erase [EquivBEq α] [LawfulHashable α] {k a : α} :
(m.erase k)[a]? = bif k == a then none else m[a]? :=
DHashMap.Const.get?_erase
@[simp]
theorem getElem?_erase_self [EquivBEq α] [LawfulHashable α] {k : α} : (m.erase k)[k]? = none :=
DHashMap.Const.get?_erase_self
theorem getElem?_congr [EquivBEq α] [LawfulHashable α] {a b : α} (hab : a == b) : m[a]? = m[b]? :=
DHashMap.Const.get?_congr hab
theorem getElem_insert [EquivBEq α] [LawfulHashable α] {k a : α} {v : β} {h₁} :
(m.insert k v)[a]'h₁ =
if h₂ : k == a then v else m[a]'(mem_of_mem_insert h₁ (Bool.eq_false_iff.2 h₂)) :=
DHashMap.Const.get_insert (h₁ := h₁)
@[simp]
theorem getElem_insert_self [EquivBEq α] [LawfulHashable α] {k : α} {v : β} :
(m.insert k v)[k]'mem_insert_self = v :=
DHashMap.Const.get_insert_self
@[simp]
theorem getElem_erase [EquivBEq α] [LawfulHashable α] {k a : α} {h'} :
(m.erase k)[a]'h' = m[a]'(mem_of_mem_erase h') :=
DHashMap.Const.get_erase (h' := h')
theorem getElem?_eq_some_getElem [EquivBEq α] [LawfulHashable α] {a : α} {h' : a ∈ m} :
m[a]? = some (m[a]'h') :=
@DHashMap.Const.get?_eq_some_get _ _ _ _ _ _ _ _ h'
theorem getElem_congr [LawfulBEq α] {a b : α} (hab : a == b) {h'} :
m[a]'h' = m[b]'((mem_congr hab).1 h') :=
DHashMap.Const.get_congr hab (h' := h')
@[simp]
theorem getElem!_empty [Inhabited β] {a : α} {c} : (empty c : HashMap α β)[a]! = default :=
DHashMap.Const.get!_empty
@[simp]
theorem getElem!_emptyc [Inhabited β] {a : α} : (∅ : HashMap α β)[a]! = default :=
DHashMap.Const.get!_emptyc
theorem getElem!_of_isEmpty [EquivBEq α] [LawfulHashable α] [Inhabited β] {a : α} :
m.isEmpty = true → m[a]! = default :=
DHashMap.Const.get!_of_isEmpty
theorem getElem!_insert [EquivBEq α] [LawfulHashable α] [Inhabited β] {k a : α} {v : β} :
(m.insert k v)[a]! = bif k == a then v else m[a]! :=
DHashMap.Const.get!_insert
@[simp]
theorem getElem!_insert_self [EquivBEq α] [LawfulHashable α] [Inhabited β] {k : α} {v : β} :
(m.insert k v)[k]! = v :=
DHashMap.Const.get!_insert_self
theorem getElem!_eq_default_of_contains_eq_false [EquivBEq α] [LawfulHashable α] [Inhabited β]
{a : α} : m.contains a = false → m[a]! = default :=
DHashMap.Const.get!_eq_default_of_contains_eq_false
theorem getElem!_eq_default [EquivBEq α] [LawfulHashable α] [Inhabited β] {a : α} :
¬a ∈ m → m[a]! = default :=
DHashMap.Const.get!_eq_default
theorem getElem!_erase [EquivBEq α] [LawfulHashable α] [Inhabited β] {k a : α} :
(m.erase k)[a]! = bif k == a then default else m[a]! :=
DHashMap.Const.get!_erase
@[simp]
theorem getElem!_erase_self [EquivBEq α] [LawfulHashable α] [Inhabited β] {k : α} :
(m.erase k)[k]! = default :=
DHashMap.Const.get!_erase_self
theorem getElem?_eq_some_getElem!_of_contains [EquivBEq α] [LawfulHashable α] [Inhabited β]
{a : α} : m.contains a = true → m[a]? = some m[a]! :=
DHashMap.Const.get?_eq_some_get!_of_contains
theorem getElem?_eq_some_getElem! [EquivBEq α] [LawfulHashable α] [Inhabited β] {a : α} :
a ∈ m → m[a]? = some m[a]! :=
DHashMap.Const.get?_eq_some_get!
theorem getElem!_eq_get!_getElem? [EquivBEq α] [LawfulHashable α] [Inhabited β] {a : α} :
m[a]! = m[a]?.get! :=
DHashMap.Const.get!_eq_get!_get?
theorem getElem_eq_getElem! [EquivBEq α] [LawfulHashable α] [Inhabited β] {a : α} {h'} :
m[a]'h' = m[a]! :=
@DHashMap.Const.get_eq_get! _ _ _ _ _ _ _ _ _ h'
theorem getElem!_congr [EquivBEq α] [LawfulHashable α] [Inhabited β] {a b : α} (hab : a == b) :
m[a]! = m[b]! :=
DHashMap.Const.get!_congr hab
@[simp]
theorem getD_empty {a : α} {fallback : β} {c} :
(empty c : HashMap α β).getD a fallback = fallback :=
DHashMap.Const.getD_empty
@[simp]
theorem getD_emptyc {a : α} {fallback : β} : (∅ : HashMap α β).getD a fallback = fallback :=
DHashMap.Const.getD_empty
theorem getD_of_isEmpty [EquivBEq α] [LawfulHashable α] {a : α} {fallback : β} :
m.isEmpty = true → m.getD a fallback = fallback :=
DHashMap.Const.getD_of_isEmpty
theorem getD_insert [EquivBEq α] [LawfulHashable α] {k a : α} {fallback v : β} :
(m.insert k v).getD a fallback = bif k == a then v else m.getD a fallback :=
DHashMap.Const.getD_insert
@[simp]
theorem getD_insert_self [EquivBEq α] [LawfulHashable α] {k : α} {fallback v : β} :
(m.insert k v).getD k fallback = v :=
DHashMap.Const.getD_insert_self
theorem getD_eq_fallback_of_contains_eq_false [EquivBEq α] [LawfulHashable α] {a : α}
{fallback : β} : m.contains a = false → m.getD a fallback = fallback :=
DHashMap.Const.getD_eq_fallback_of_contains_eq_false
theorem getD_eq_fallback [EquivBEq α] [LawfulHashable α] {a : α} {fallback : β} :
¬a ∈ m → m.getD a fallback = fallback :=
DHashMap.Const.getD_eq_fallback
theorem getD_erase [EquivBEq α] [LawfulHashable α] {k a : α} {fallback : β} :
(m.erase k).getD a fallback = bif k == a then fallback else m.getD a fallback :=
DHashMap.Const.getD_erase
@[simp]
theorem getD_erase_self [EquivBEq α] [LawfulHashable α] {k : α} {fallback : β} :
(m.erase k).getD k fallback = fallback :=
DHashMap.Const.getD_erase_self
theorem getElem?_eq_some_getD_of_contains [EquivBEq α] [LawfulHashable α] {a : α} {fallback : β} :
m.contains a = true → m[a]? = some (m.getD a fallback) :=
DHashMap.Const.get?_eq_some_getD_of_contains
theorem getElem?_eq_some_getD [EquivBEq α] [LawfulHashable α] {a : α} {fallback : β} :
a ∈ m → m[a]? = some (m.getD a fallback) :=
DHashMap.Const.get?_eq_some_getD
theorem getD_eq_getD_getElem? [EquivBEq α] [LawfulHashable α] {a : α} {fallback : β} :
m.getD a fallback = m[a]?.getD fallback :=
DHashMap.Const.getD_eq_getD_get?
theorem getElem_eq_getD [EquivBEq α] [LawfulHashable α] {a : α} {fallback : β} {h'} :
m[a]'h' = m.getD a fallback :=
@DHashMap.Const.get_eq_getD _ _ _ _ _ _ _ _ _ h'
theorem getElem!_eq_getD_default [EquivBEq α] [LawfulHashable α] [Inhabited β] {a : α} :
m[a]! = m.getD a default :=
DHashMap.Const.get!_eq_getD_default
theorem getD_congr [EquivBEq α] [LawfulHashable α] {a b : α} {fallback : β} (hab : a == b) :
m.getD a fallback = m.getD b fallback :=
DHashMap.Const.getD_congr hab
@[simp]
theorem isEmpty_insertIfNew [EquivBEq α] [LawfulHashable α] {k : α} {v : β} :
(m.insertIfNew k v).isEmpty = false :=
DHashMap.isEmpty_insertIfNew
@[simp]
theorem contains_insertIfNew [EquivBEq α] [LawfulHashable α] {k a : α} {v : β} :
(m.insertIfNew k v).contains a = (k == a || m.contains a) :=
DHashMap.contains_insertIfNew
@[simp]
theorem mem_insertIfNew [EquivBEq α] [LawfulHashable α] {k a : α} {v : β} :
a ∈ m.insertIfNew k v ↔ k == a ∨ a ∈ m :=
DHashMap.mem_insertIfNew
theorem contains_insertIfNew_self [EquivBEq α] [LawfulHashable α] {k : α} {v : β} :
(m.insertIfNew k v).contains k :=
DHashMap.contains_insertIfNew_self
theorem mem_insertIfNew_self [EquivBEq α] [LawfulHashable α] {k : α} {v : β} :
k ∈ m.insertIfNew k v :=
DHashMap.mem_insertIfNew_self
theorem contains_of_contains_insertIfNew [EquivBEq α] [LawfulHashable α] {k a : α} {v : β} :
(m.insertIfNew k v).contains a → (k == a) = false → m.contains a :=
DHashMap.contains_of_contains_insertIfNew
theorem mem_of_mem_insertIfNew [EquivBEq α] [LawfulHashable α] {k a : α} {v : β} :
a ∈ m.insertIfNew k v → (k == a) = false → a ∈ m :=
DHashMap.mem_of_mem_insertIfNew
/-- This is a restatement of `contains_insertIfNew` that is written to exactly match the proof
obligation in the statement of `getElem_insertIfNew`. -/
theorem contains_of_contains_insertIfNew' [EquivBEq α] [LawfulHashable α] {k a : α} {v : β} :
(m.insertIfNew k v).contains a → ¬((k == a) ∧ m.contains k = false) → m.contains a :=
DHashMap.contains_of_contains_insertIfNew'
/-- This is a restatement of `mem_insertIfNew` that is written to exactly match the proof obligation
in the statement of `getElem_insertIfNew`. -/
theorem mem_of_mem_insertIfNew' [EquivBEq α] [LawfulHashable α] {k a : α} {v : β} :
a ∈ m.insertIfNew k v → ¬((k == a) ∧ ¬k ∈ m) → a ∈ m :=
DHashMap.mem_of_mem_insertIfNew'
theorem size_insertIfNew [EquivBEq α] [LawfulHashable α] {k : α} {v : β} :
(m.insertIfNew k v).size = bif m.contains k then m.size else m.size + 1 :=
DHashMap.size_insertIfNew
theorem size_le_size_insertIfNew [EquivBEq α] [LawfulHashable α] {k : α} {v : β} :
m.size ≤ (m.insertIfNew k v).size :=
DHashMap.size_le_size_insertIfNew
theorem size_insertIfNew_le [EquivBEq α] [LawfulHashable α] {k : α} {v : β} :
(m.insertIfNew k v).size ≤ m.size + 1 :=
DHashMap.size_insertIfNew_le
theorem getElem?_insertIfNew [EquivBEq α] [LawfulHashable α] {k a : α} {v : β} :
(m.insertIfNew k v)[a]? = bif k == a && !m.contains k then some v else m[a]? :=
DHashMap.Const.get?_insertIfNew
theorem getElem_insertIfNew [EquivBEq α] [LawfulHashable α] {k a : α} {v : β} {h₁} :
(m.insertIfNew k v)[a]'h₁ =
if h₂ : k == a ∧ ¬k ∈ m then v else m[a]'(mem_of_mem_insertIfNew' h₁ h₂) :=
DHashMap.Const.get_insertIfNew (h₁ := h₁)
theorem getElem!_insertIfNew [EquivBEq α] [LawfulHashable α] [Inhabited β] {k a : α} {v : β} :
(m.insertIfNew k v)[a]! = bif k == a && !m.contains k then v else m[a]! :=
DHashMap.Const.get!_insertIfNew
theorem getD_insertIfNew [EquivBEq α] [LawfulHashable α] {k a : α} {fallback v : β} :
(m.insertIfNew k v).getD a fallback =
bif k == a && !m.contains k then v else m.getD a fallback :=
DHashMap.Const.getD_insertIfNew
@[simp]
theorem getThenInsertIfNew?_fst {k : α} {v : β} : (getThenInsertIfNew? m k v).1 = get? m k :=
DHashMap.Const.getThenInsertIfNew?_fst
@[simp]
theorem getThenInsertIfNew?_snd {k : α} {v : β} :
(getThenInsertIfNew? m k v).2 = m.insertIfNew k v :=
ext (DHashMap.Const.getThenInsertIfNew?_snd)
instance [EquivBEq α] [LawfulHashable α] : LawfulGetElem (HashMap α β) α β (fun m a => a ∈ m) where
getElem?_def m a _ := by
split
· exact getElem?_eq_some_getElem
· exact getElem?_eq_none ‹_›
getElem!_def m a := by
rw [getElem!_eq_get!_getElem?]
split <;> simp_all
end
end Std.HashMap