-
Notifications
You must be signed in to change notification settings - Fork 290
/
Copy pathREADME.md
427 lines (308 loc) · 24 KB
/
README.md
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427



[](https://pypi.org/project/lightly/)
[](https://pepy.tech/project/lightly)
[](https://github.com/psf/black)
[](https://discord.gg/xvNJW94)
Lightly**SSL** is a computer vision framework for self-supervised learning.
- [Documentation](https://docs.lightly.ai/self-supervised-learning/)
- [Github](https://github.com/lightly-ai/lightly)
- [Discord](https://discord.gg/xvNJW94) (We have weekly paper sessions!)
For a commercial version with more features, including Docker support and pretraining
models for embedding, classification, detection, and segmentation tasks with
a single command, please contact [email protected].
We've also built a whole platform on top, with additional features for active learning
and [data curation](https://docs.lightly.ai/docs/what-is-lightly). If you're interested in the
Lightly Worker Solution to easily process millions of samples and run [powerful algorithms](https://docs.lightly.ai/docs/customize-a-selection)
on your data, check out [lightly.ai](https://www.lightly.ai). It's free to get started!
## Features
This self-supervised learning framework offers the following features:
- Modular framework, which exposes low-level building blocks such as loss functions and
model heads.
- Easy to use and written in a PyTorch like style.
- Supports custom backbone models for self-supervised pre-training.
- Support for distributed training using PyTorch Lightning.
### Supported Models
You can [find sample code for all the supported models here.](https://docs.lightly.ai/self-supervised-learning/examples/models.html) We provide PyTorch, PyTorch Lightning,
and PyTorch Lightning distributed examples for all models to kickstart your project.
**Models**:
- AIM, 2024 [paper](https://arxiv.org/abs/2401.08541) [docs](https://docs.lightly.ai/self-supervised-learning/examples/aim.html)
- Barlow Twins, 2021 [paper](https://arxiv.org/abs/2103.03230) [docs](https://docs.lightly.ai/self-supervised-learning/examples/barlowtwins.html)
- BYOL, 2020 [paper](https://arxiv.org/abs/2006.07733) [docs](https://docs.lightly.ai/self-supervised-learning/examples/byol.html)
- DCL & DCLW, 2021 [paper](https://arxiv.org/abs/2110.06848) [docs](https://docs.lightly.ai/self-supervised-learning/examples/dcl.html)
- DenseCL, 2021 [paper](https://arxiv.org/abs/2011.09157) [docs](https://docs.lightly.ai/self-supervised-learning/examples/densecl.html)
- DINO, 2021 [paper](https://arxiv.org/abs/2104.14294) [docs](https://docs.lightly.ai/self-supervised-learning/examples/dino.html)
- MAE, 2021 [paper](https://arxiv.org/abs/2111.06377) [docs](https://docs.lightly.ai/self-supervised-learning/examples/mae.html)
- MSN, 2022 [paper](https://arxiv.org/abs/2204.07141) [docs](https://docs.lightly.ai/self-supervised-learning/examples/msn.html)
- MoCo, 2019 [paper](https://arxiv.org/abs/1911.05722) [docs](https://docs.lightly.ai/self-supervised-learning/examples/moco.html)
- NNCLR, 2021 [paper](https://arxiv.org/abs/2104.14548) [docs](https://docs.lightly.ai/self-supervised-learning/examples/nnclr.html)
- PMSN, 2022 [paper](https://arxiv.org/abs/2210.07277) [docs](https://docs.lightly.ai/self-supervised-learning/examples/pmsn.html)
- SimCLR, 2020 [paper](https://arxiv.org/abs/2002.05709) [docs](https://docs.lightly.ai/self-supervised-learning/examples/simclr.html)
- SimMIM, 2021 [paper](https://arxiv.org/abs/2111.09886) [docs](https://docs.lightly.ai/self-supervised-learning/examples/simmim.html)
- SimSiam, 2021 [paper](https://arxiv.org/abs/2011.10566) [docs](https://docs.lightly.ai/self-supervised-learning/examples/simsiam.html)
- SMoG, 2022 [paper](https://arxiv.org/abs/2207.06167) [docs](https://docs.lightly.ai/self-supervised-learning/examples/smog.html)
- SwaV, 2020 [paper](https://arxiv.org/abs/2006.09882) [docs](https://docs.lightly.ai/self-supervised-learning/examples/swav.html)
- TiCo, 2022 [paper](https://arxiv.org/abs/2206.10698) [docs](https://docs.lightly.ai/self-supervised-learning/examples/tico.html)
- VICReg, 2022 [paper](https://arxiv.org/abs/2105.04906) [docs](https://docs.lightly.ai/self-supervised-learning/examples/vicreg.html)
- VICRegL, 2022 [paper](https://arxiv.org/abs/2210.01571) [docs](https://docs.lightly.ai/self-supervised-learning/examples/vicregl.html)
## Tutorials
Want to jump to the tutorials and see Lightly in action?
- [Train MoCo on CIFAR-10](https://docs.lightly.ai/self-supervised-learning/tutorials/package/tutorial_moco_memory_bank.html)
- [Train SimCLR on Clothing Data](https://docs.lightly.ai/self-supervised-learning/tutorials/package/tutorial_simclr_clothing.html)
- [Train SimSiam on Satellite Images](https://docs.lightly.ai/self-supervised-learning/tutorials/package/tutorial_simsiam_esa.html)
- [Use Lightly with Custom Augmentations](https://docs.lightly.ai/self-supervised-learning/tutorials/package/tutorial_custom_augmentations.html)
- [Pre-train a Detectron2 Backbone with Lightly](https://docs.lightly.ai/self-supervised-learning/tutorials/package/tutorial_pretrain_detectron2.html)
- [Finetuning Lightly Checkpoints](https://docs.lightly.ai/self-supervised-learning/tutorials/package/tutorial_checkpoint_finetuning.html)
Community and partner projects:
- [On-Device Deep Learning with Lightly on an ARM microcontroller](https://github.com/ARM-software/EndpointAI/tree/master/ProofOfConcepts/Vision/OpenMvMaskDefaults)
## Quick Start
Lightly requires **Python 3.7+**. We recommend installing Lightly in a **Linux** or **OSX** environment. Python 3.12 is not yet supported, as PyTorch itself lacks Python 3.12 compatibility.
### Dependencies
Due to the modular nature of the Lightly package some modules can be used with older versions of dependencies. However, to use all features as of today lightly requires the following dependencies:
- [PyTorch](https://pytorch.org/)>=1.11.0
- [Torchvision](https://pytorch.org/vision/stable/index.html)>=0.12.0
- [PyTorch Lightning](https://www.pytorchlightning.ai/index.html)>=1.7.1
Lightly is compatible with PyTorch and PyTorch Lightning v2.0+!
### Installation
You can install Lightly and its dependencies from PyPI with:
```
pip3 install lightly
```
We strongly recommend that you install Lightly in a dedicated virtualenv, to avoid
conflicting with your system packages.
### Lightly in Action
With Lightly, you can use the latest self-supervised learning methods in a modular
way using the full power of PyTorch. Experiment with different backbones,
models, and loss functions. The framework has been designed to be easy to use
from the ground up. [Find more examples in our docs](https://docs.lightly.ai/self-supervised-learning/examples/models.html).
```python
import torch
import torchvision
from lightly import loss
from lightly import transforms
from lightly.data import LightlyDataset
from lightly.models.modules import heads
# Create a PyTorch module for the SimCLR model.
class SimCLR(torch.nn.Module):
def __init__(self, backbone):
super().__init__()
self.backbone = backbone
self.projection_head = heads.SimCLRProjectionHead(
input_dim=512, # Resnet18 features have 512 dimensions.
hidden_dim=512,
output_dim=128,
)
def forward(self, x):
features = self.backbone(x).flatten(start_dim=1)
z = self.projection_head(features)
return z
# Use a resnet backbone.
backbone = torchvision.models.resnet18()
# Ignore the classification head as we only want the features.
backbone.fc = torch.nn.Identity()
# Build the SimCLR model.
model = SimCLR(backbone)
# Prepare transform that creates multiple random views for every image.
transform = transforms.SimCLRTransform(input_size=32, cj_prob=0.5)
# Create a dataset from your image folder.
dataset = LightlyDataset(input_dir="./my/cute/cats/dataset/", transform=transform)
# Build a PyTorch dataloader.
dataloader = torch.utils.data.DataLoader(
dataset, # Pass the dataset to the dataloader.
batch_size=128, # A large batch size helps with the learning.
shuffle=True, # Shuffling is important!
)
# Lightly exposes building blocks such as loss functions.
criterion = loss.NTXentLoss(temperature=0.5)
# Get a PyTorch optimizer.
optimizer = torch.optim.SGD(model.parameters(), lr=0.1, weight_decay=1e-6)
# Train the model.
for epoch in range(10):
for (view0, view1), targets, filenames in dataloader:
z0 = model(view0)
z1 = model(view1)
loss = criterion(z0, z1)
loss.backward()
optimizer.step()
optimizer.zero_grad()
print(f"loss: {loss.item():.5f}")
```
You can easily use another model like SimSiam by swapping the model and the
loss function.
```python
# PyTorch module for the SimSiam model.
class SimSiam(torch.nn.Module):
def __init__(self, backbone):
super().__init__()
self.backbone = backbone
self.projection_head = heads.SimSiamProjectionHead(512, 512, 128)
self.prediction_head = heads.SimSiamPredictionHead(128, 64, 128)
def forward(self, x):
features = self.backbone(x).flatten(start_dim=1)
z = self.projection_head(features)
p = self.prediction_head(z)
z = z.detach()
return z, p
model = SimSiam(backbone)
# Use the SimSiam loss function.
criterion = loss.NegativeCosineSimilarity()
```
You can [find a more complete example for SimSiam here.](https://docs.lightly.ai/self-supervised-learning/examples/simsiam.html)
Use PyTorch Lightning to train the model:
```python
from pytorch_lightning import LightningModule, Trainer
class SimCLR(LightningModule):
def __init__(self):
super().__init__()
resnet = torchvision.models.resnet18()
resnet.fc = torch.nn.Identity()
self.backbone = resnet
self.projection_head = heads.SimCLRProjectionHead(512, 512, 128)
self.criterion = loss.NTXentLoss()
def forward(self, x):
features = self.backbone(x).flatten(start_dim=1)
z = self.projection_head(features)
return z
def training_step(self, batch, batch_index):
(view0, view1), _, _ = batch
z0 = self.forward(view0)
z1 = self.forward(view1)
loss = self.criterion(z0, z1)
return loss
def configure_optimizers(self):
optim = torch.optim.SGD(self.parameters(), lr=0.06)
return optim
model = SimCLR()
trainer = Trainer(max_epochs=10, devices=1, accelerator="gpu")
trainer.fit(model, dataloader)
```
See [our docs for a full PyTorch Lightning example.](https://docs.lightly.ai/self-supervised-learning/examples/simclr.html)
Or train the model on 4 GPUs:
```python
# Use distributed version of loss functions.
criterion = loss.NTXentLoss(gather_distributed=True)
trainer = Trainer(
max_epochs=10,
devices=4,
accelerator="gpu",
strategy="ddp",
sync_batchnorm=True,
use_distributed_sampler=True, # or replace_sampler_ddp=True for PyTorch Lightning <2.0
)
trainer.fit(model, dataloader)
```
We provide multi-GPU training examples with distributed gather and synchronized BatchNorm.
[Have a look at our docs regarding distributed training.](https://docs.lightly.ai/self-supervised-learning/getting_started/distributed_training.html)
## Benchmarks
Implemented models and their performance on various datasets. Hyperparameters are not
tuned for maximum accuracy. For detailed results and more information about the benchmarks click
[here](https://docs.lightly.ai/self-supervised-learning/getting_started/benchmarks.html).
### ImageNet1k
[ImageNet1k benchmarks](https://docs.lightly.ai/self-supervised-learning/getting_started/benchmarks.html#imagenet1k)
**Note**: Evaluation settings are based on these papers:
- Linear: [SimCLR](https://arxiv.org/abs/2002.05709)
- Finetune: [SimCLR](https://arxiv.org/abs/2002.05709)
- KNN: [InstDisc](https://arxiv.org/abs/1805.01978)
See the [benchmarking scripts](./benchmarks/imagenet/resnet50/) for details.
| Model | Backbone | Batch Size | Epochs | Linear Top1 | Finetune Top1 | kNN Top1 | Tensorboard | Checkpoint |
| --------------- | -------- | ---------- | ------ | ----------- | ------------- | -------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| BarlowTwins | Res50 | 256 | 100 | 62.9 | 72.6 | 45.6 | [link](https://lightly-ssl-checkpoints.s3.amazonaws.com/imagenet_resnet50_barlowtwins_2023-08-18_00-11-03/pretrain/version_0/events.out.tfevents.1692310273.Machine2.569794.0) | [link](https://lightly-ssl-checkpoints.s3.amazonaws.com/imagenet_resnet50_barlowtwins_2023-08-18_00-11-03/pretrain/version_0/checkpoints/epoch%3D99-step%3D500400.ckpt) |
| BYOL | Res50 | 256 | 100 | 62.5 | 74.5 | 46.0 | [link](https://lightly-ssl-checkpoints.s3.amazonaws.com/imagenet_resnet50_byol_2024-02-14_16-10-09/pretrain/version_0/events.out.tfevents.1707923418.Machine2.3205.0) | [link](https://lightly-ssl-checkpoints.s3.amazonaws.com/imagenet_resnet50_byol_2024-02-14_16-10-09/pretrain/version_0/checkpoints/epoch%3D99-step%3D500400.ckpt) |
| DINO | Res50 | 128 | 100 | 68.2 | 72.5 | 49.9 | [link](https://lightly-ssl-checkpoints.s3.amazonaws.com/imagenet_resnet50_dino_2023-06-06_13-59-48/pretrain/version_0/events.out.tfevents.1686052799.Machine2.482599.0) | [link](https://lightly-ssl-checkpoints.s3.amazonaws.com/imagenet_resnet50_dino_2023-06-06_13-59-48/pretrain/version_0/checkpoints/epoch%3D99-step%3D1000900.ckpt) |
| MAE | ViT-B/16 | 256 | 100 | 46.0 | 81.3 | 11.2 | [link](https://lightly-ssl-checkpoints.s3.amazonaws.com/imagenet_vitb16_mae_2024-02-25_19-57-30/pretrain/version_0/events.out.tfevents.1708887459.Machine2.1092409.0) | [link](https://lightly-ssl-checkpoints.s3.amazonaws.com/imagenet_vitb16_mae_2024-02-25_19-57-30/pretrain/version_0/checkpoints/epoch%3D99-step%3D500400.ckpt) |
| MoCoV2 | Res50 | 256 | 100 | 61.5 | 74.3 | 41.8 | [link](https://lightly-ssl-checkpoints.s3.amazonaws.com/imagenet_resnet50_mocov2_2024-02-18_10-29-14/pretrain/version_0/events.out.tfevents.1708248562.Machine2.439033.0) | [link](https://lightly-ssl-checkpoints.s3.amazonaws.com/imagenet_resnet50_mocov2_2024-02-18_10-29-14/pretrain/version_0/checkpoints/epoch%3D99-step%3D500400.ckpt) |
| SimCLR\* | Res50 | 256 | 100 | 63.2 | 73.9 | 44.8 | [link](https://lightly-ssl-checkpoints.s3.amazonaws.com/imagenet_resnet50_simclr_2023-06-22_09-11-13/pretrain/version_0/events.out.tfevents.1687417883.Machine2.33270.0) | [link](https://lightly-ssl-checkpoints.s3.amazonaws.com/imagenet_resnet50_simclr_2023-06-22_09-11-13/pretrain/version_0/checkpoints/epoch%3D99-step%3D500400.ckpt) |
| SimCLR\* + DCL | Res50 | 256 | 100 | 65.1 | 73.5 | 49.6 | [link](https://lightly-ssl-checkpoints.s3.amazonaws.com/imagenet_resnet50_dcl_2023-07-04_16-51-40/pretrain/version_0/events.out.tfevents.1688482310.Machine2.247807.0) | [link](https://lightly-ssl-checkpoints.s3.amazonaws.com/imagenet_resnet50_dcl_2023-07-04_16-51-40/pretrain/version_0/checkpoints/epoch%3D99-step%3D500400.ckpt) |
| SimCLR\* + DCLW | Res50 | 256 | 100 | 64.5 | 73.2 | 48.5 | [link](https://lightly-ssl-checkpoints.s3.amazonaws.com/imagenet_resnet50_dclw_2023-07-07_14-57-13/pretrain/version_0/events.out.tfevents.1688734645.Machine2.3176.0) | [link](https://lightly-ssl-checkpoints.s3.amazonaws.com/imagenet_resnet50_dclw_2023-07-07_14-57-13/pretrain/version_0/checkpoints/epoch%3D99-step%3D500400.ckpt) |
| SwAV | Res50 | 256 | 100 | 67.2 | 75.4 | 49.5 | [link](https://lightly-ssl-checkpoints.s3.amazonaws.com/imagenet_resnet50_swav_2023-05-25_08-29-14/pretrain/version_0/events.out.tfevents.1684996168.Machine2.1445108.0) | [link](https://lightly-ssl-checkpoints.s3.amazonaws.com/imagenet_resnet50_swav_2023-05-25_08-29-14/pretrain/version_0/checkpoints/epoch%3D99-step%3D500400.ckpt) |
| TiCo | Res50 | 256 | 100 | 49.7 | 72.7 | 26.6 | [link](https://lightly-ssl-checkpoints.s3.amazonaws.com/imagenet_resnet50_tico_2024-01-07_18-40-57/pretrain/version_0/events.out.tfevents.1704649265.Machine2.1604956.0) | [link](https://lightly-ssl-checkpoints.s3.amazonaws.com/imagenet_resnet50_tico_2024-01-07_18-40-57/pretrain/version_0/checkpoints/epoch%3D99-step%3D250200.ckpt) |
| VICReg | Res50 | 256 | 100 | 63.0 | 73.7 | 46.3 | [link](https://lightly-ssl-checkpoints.s3.amazonaws.com/imagenet_resnet50_vicreg_2023-09-11_10-53-08/pretrain/version_0/events.out.tfevents.1694422401.Machine2.556563.0) | [link](https://lightly-ssl-checkpoints.s3.amazonaws.com/imagenet_resnet50_vicreg_2023-09-11_10-53-08/pretrain/version_0/checkpoints/epoch%3D99-step%3D500400.ckpt) |
_\*We use square root learning rate scaling instead of linear scaling as it yields
better results for smaller batch sizes. See Appendix B.1 in the [SimCLR paper](https://arxiv.org/abs/2002.05709)._
### ImageNet100
[ImageNet100 benchmarks detailed results](https://docs.lightly.ai/self-supervised-learning/getting_started/benchmarks.html#imagenet100)
### Imagenette
[Imagenette benchmarks detailed results](https://docs.lightly.ai/self-supervised-learning/getting_started/benchmarks.html#imagenette)
### CIFAR-10
[CIFAR-10 benchmarks detailed results](https://docs.lightly.ai/self-supervised-learning/getting_started/benchmarks.html#cifar-10)
## Terminology
Below you can see a schematic overview of the different concepts in the package.
The terms in bold are explained in more detail in our [documentation](https://docs.lightly.ai/self-supervised-learning/).
<img src="/docs/source/getting_started/images/lightly_overview.png" alt="Overview of the Lightly pip package"/></a>
### Next Steps
Head to the [documentation](https://docs.lightly.ai/self-supervised-learning/) and see the things you can achieve with Lightly!
## Development
To install dev dependencies (for example to contribute to the framework) you can use the following command:
```
pip3 install -e ".[dev]"
```
For more information about how to contribute have a look [here](CONTRIBUTING.md).
### Running Tests
Unit tests are within the [tests directory](tests/) and we recommend running them using
[pytest](https://docs.pytest.org/en/stable/). There are two test configurations
available. By default, only a subset will be run:
```
make test-fast
```
To run all tests (including the slow ones) you can use the following command:
```
make test
```
To test a specific file or directory use:
```
pytest <path to file or directory>
```
### Code Formatting
To format code with [black](https://black.readthedocs.io/en/stable/) and [isort](https://docs.pytest.org) run:
```
make format
```
## Further Reading
**Self-Supervised Learning**:
- Have a look at our [#papers channel on discord](https://discord.com/channels/752876370337726585/815153188487299083)
for the newest self-supervised learning papers.
- [A Cookbook of Self-Supervised Learning, 2023](https://arxiv.org/abs/2304.12210)
- [Masked Autoencoders Are Scalable Vision Learners, 2021](https://arxiv.org/abs/2111.06377)
- [Emerging Properties in Self-Supervised Vision Transformers, 2021](https://arxiv.org/abs/2104.14294)
- [Unsupervised Learning of Visual Features by Contrasting Cluster Assignments, 2021](https://arxiv.org/abs/2006.09882)
- [What Should Not Be Contrastive in Contrastive Learning, 2020](https://arxiv.org/abs/2008.05659)
- [A Simple Framework for Contrastive Learning of Visual Representations, 2020](https://arxiv.org/abs/2002.05709)
- [Momentum Contrast for Unsupervised Visual Representation Learning, 2020](https://arxiv.org/abs/1911.05722)
## FAQ
- Why should I care about self-supervised learning? Aren't pre-trained models from ImageNet much better for transfer learning?
- Self-supervised learning has become increasingly popular among scientists over the last years because the learned representations perform extraordinarily well on downstream tasks. This means that they capture the important information in an image better than other types of pre-trained models. By training a self-supervised model on _your_ dataset, you can make sure that the representations have all the necessary information about your images.
- How can I contribute?
- Create an issue if you encounter bugs or have ideas for features we should implement. You can also add your own code by forking this repository and creating a PR. More details about how to contribute with code is in our [contribution guide](CONTRIBUTING.md).
- Is this framework for free?
- Yes, this framework is completely free to use and we provide the source code. We believe that we need to make training deep learning models more data efficient to achieve widespread adoption. One step to achieve this goal is by leveraging self-supervised learning. The company behind Lightly is committed to keep this framework open-source.
- If this framework is free, how is the company behind Lightly making money?
- Training self-supervised models is only one part of our solution.
[The company behind Lightly](https://lightly.ai/) focuses on processing and analyzing embeddings created by self-supervised models.
By building, what we call a self-supervised active learning loop we help companies understand and work with their data more efficiently.
As the [Lightly Solution](https://docs.lightly.ai) is a freemium product, you can try it out for free. However, we will charge for some features.
- In any case this framework will always be free to use, even for commercial purposes.
## Lightly in Research
- [Reverse Engineering Self-Supervised Learning, 2023](https://arxiv.org/abs/2305.15614)
- [Learning Visual Representations via Language-Guided Sampling, 2023](https://arxiv.org/pdf/2302.12248.pdf)
- [Self-Supervised Learning Methods for Label-Efficient Dental Caries Classification, 2022](https://www.mdpi.com/2075-4418/12/5/1237)
- [DPCL: Constrative Representation Learning with Differential Privacy, 2022](https://assets.researchsquare.com/files/rs-1516950/v1_covered.pdf?c=1654486158)
- [Decoupled Contrastive Learning, 2021](https://arxiv.org/abs/2110.06848)
- [solo-learn: A Library of Self-supervised Methods for Visual Representation Learning, 2021](https://www.jmlr.org/papers/volume23/21-1155/21-1155.pdf)
## Company behind this Open Source Framework
[Lightly](https://www.lightly.ai) is a spin-off from ETH Zurich that helps companies
build efficient active learning pipelines to select the most relevant data for their models.
You can find out more about the company and it's services by following the links below:
- [Homepage](https://www.lightly.ai)
- [Web-App](https://app.lightly.ai)
- [Lightly Solution Documentation (Lightly Worker & API)](https://docs.lightly.ai/)
## BibTeX
If you want to cite the framework feel free to use this:
```bibtex
@article{susmelj2020lightly,
title={Lightly},
author={Igor Susmelj and Matthias Heller and Philipp Wirth and Jeremy Prescott and Malte Ebner et al.},
journal={GitHub. Note: https://github.com/lightly-ai/lightly},
year={2020}
}
```