-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataLoader.py
48 lines (46 loc) · 2.37 KB
/
dataLoader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import torch
from torchvision import datasets, transforms
import utils
import numpy as np
import os
# ==================================================
# Use this manual seed to reproduce all results
# ==================================================
torch.manual_seed(42)
torch.use_deterministic_algorithms(True)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
np.random.seed(42)
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8"
# ==================================================
def get_data():
transform = transforms.Compose([
transforms.Resize(32),
transforms.ToTensor()
])
transform_cifar10 = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
transform_cifar100 = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761))
])
if utils.dataset == 'mnist':
traindata = datasets.MNIST('./data', train=True, download=True, transform=transform)
testdata = datasets.MNIST('./data', train=False, transform=transform)
elif utils.dataset == 'fmnist':
traindata = datasets.FashionMNIST('./data', train=True, download=True, transform=transform)
testdata = datasets.FashionMNIST('./data', train=False, transform=transform)
elif utils.dataset == 'cifar10':
traindata = datasets.CIFAR10('./data', train=True, download=True, transform=transform_cifar10)
testdata = datasets.CIFAR10('./data', train=False, transform=transform_cifar10)
else:
traindata = datasets.CIFAR100('./data', train=True, download=True, transform=transform_cifar100)
testdata = datasets.CIFAR100('./data', train=False, transform=transform_cifar100)
traindata_split = torch.utils.data.random_split(traindata, [int(traindata.data.shape[0] / utils.num_clients) for _ in range(utils.num_clients)])
train_loader = [torch.utils.data.DataLoader(x, batch_size=utils.batch_size, shuffle=True) for x in traindata_split]
test_loader = torch.utils.data.DataLoader(testdata, batch_size=utils.batch_size, shuffle=True)
ni = [int(traindata.data.shape[0] / utils.num_clients) for _ in range(utils.num_clients)]
ns = ni[0] * utils.num_selected
return train_loader, test_loader, testdata, ni, ns