-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
146 lines (118 loc) · 5.82 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import sys
import os
import time
import random
#from thop import profile
import torch
from torch.nn import utils
from progress.bar import Bar
from collections import OrderedDict
from PIL import Image
from base.framework_factory import load_framework
from base.util import *
from base.data import get_loader, Test_Dataset
from test import test_model
torch.set_printoptions(precision=5)
def main():
if len(sys.argv) > 1:
net_name = sys.argv[1]
else:
print('Need model name!')
return
# Loading model
config, model, optim, sche, model_loss, saver = load_framework(net_name)
ave_batch = config['agg_batch'] // config['batch']
# agg_batch: batch size for backwarding.
# batch: batch size when loading to gpus. Decided by the GPU memory.
print(sorted(config.items()))
print(f"Training {config['model_name']} with {config['backbone']} backbone using {config['strategy']} strategy on GPU: {config['gpus']}.")
# Loading datasets
train_loader = get_loader(config)
test_sets = OrderedDict()
for set_name in config['vals']:
test_sets[set_name] = Test_Dataset(name=set_name, config=config)
start_epoch = 1
if config['resume']:
saved_model = torch.load(config['weight'], map_location='cpu')
if config['num_gpu'] > 1:
model.module.load_state_dict(saved_model)
else:
model.load_state_dict(saved_model)
start_epoch = int(config['weight'].split('_')[-1].split('.')[0]) + 1
debug = config['debug']
num_epoch = config['epoch']
num_iter = len(train_loader)
#ave_batch = config['ave_batch']
trset = config['trset']
model.zero_grad()
for epoch in range(start_epoch, num_epoch + 1):
model.train()
torch.cuda.empty_cache()
if debug:
test_model(model, test_sets, config, epoch)
bar = Bar('{:10}-{:8} | epoch {:2}:'.format(net_name, config['sub'], epoch), max=num_iter)
config['cur_epoch'] = epoch
config['iter_per_epoch'] = num_iter
st = time.time()
optim.zero_grad()
loss_count = 0
batch_idx = 0
#sche.step()
for i, pack in enumerate(train_loader, start=1):
current_iter = (epoch - 1) * num_iter + i
total_iter = num_epoch * num_iter
#print('iter: ', total_iter, current_iter)
sche(optim, current_iter, total_iter, config)
images, gts = pack
images, gts= images.float().cuda(), gts.float().cuda()
if config['multi']:
if net_name == 'picanet':
# picanet only support 320*320 input now!
# picanet doesn't support multi-scale training, so we crop images to same sizes to simulate it.
input_size = config['size']
images = F.upsample(images, size=(input_size, input_size), mode='bilinear', align_corners=True)
gts = F.upsample(gts, size=(input_size, input_size), mode='nearest')
scales = [16, 8, 0]
scale = np.random.choice(scales, 1)
w_start = int(random.random() * scale)
h_start = int(random.random() * scale)
new_size = int(input_size - scale)
images = images[:, :, h_start:h_start+new_size, w_start:w_start+new_size]
gts = gts[:, :, h_start:h_start+new_size, w_start:w_start+new_size]
images = F.upsample(images, size=(input_size, input_size), mode='bilinear', align_corners=True)
gts = F.upsample(gts, size=(input_size, input_size), mode='nearest')
else:
#scales = [-1, 0, 1]
scales = [-2, -1, 0, 1, 2]
input_size = config['size']
input_size += int(np.random.choice(scales, 1) * 64)
#input_size += int(np.random.choice(scales, 1) * 32)
images = F.upsample(images, size=(input_size, input_size), mode='bilinear', align_corners=True)
gts = F.upsample(gts, size=(input_size, input_size), mode='nearest')
Y = model(images, 'train')
loss = model_loss(Y, gts, config) / ave_batch
loss_count += loss.data
loss.backward()
batch_idx += 1
if batch_idx == ave_batch:
if config['clip_gradient']:
utils.clip_grad_norm_(model.parameters(), config['clip_gradient'])
optim.step()
optim.zero_grad()
batch_idx = 0
lrs = ','.join([format(param['lr'], ".1e") for param in optim.param_groups])
Bar.suffix = '{:4}/{:4} | loss: {:1.3f}, LRs: [{}], time: {:1.3f}.'.format(i, num_iter, float(loss_count / i), lrs, time.time() - st)
bar.next()
bar.finish()
if epoch > num_epoch - 10:
weight_path = os.path.join(config['weight_path'], '{}_{}_{}_{}.pth'.format(config['model_name'], config['backbone'], config['sub'], epoch))
torch.save(model.state_dict(), weight_path)
test_model(model, test_sets, config, epoch)
#if trset in ('DUTS-TR', 'MSB-TR', 'COD-TR') and epoch > num_epoch - 10:
#if epoch > num_epoch - 5:
# test_model(model, test_sets, config, epoch)
#test_model(model, test_sets, config, epoch)
#if trset != 'DUTS-TR':
# test_model(model, test_sets, config, epoch)
if __name__ == "__main__":
main()