-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtemplate_matching.py
63 lines (43 loc) · 2.28 KB
/
template_matching.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#cython: language_level=3, boundscheck=False
import enum
import math
import cv2
import numpy as np
from ordered_enum import OrderedEnum
methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR', 'cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']
class APPLIABLE_ALGORITHMS(OrderedEnum):
SQUARED_DIFFERENCE = 0
NORMALIZED_SQUARED_DIFFERENCE = 1
CROSS_CORRELATION = 2
NORMALIZED_CROSS_CORRELATION = 3
COSINE_COEFFICIENT = 4
NORMALIZED_COSINE_COEFFICIENT = 5
BASIC_CROSS_CORRELATION = 6
XOR_OPERATOR = 7
class MATCHING:
def __init__(self):
self.interpolation_range_list = np.array([0,0,1], dtype=np.float32)
self.blank_list = np.array([], dtype=np.float32)
def compute(self, reference_image, sample_image, algorithm=APPLIABLE_ALGORITHMS.BASIC_CROSS_CORRELATION):
if algorithm.value == 6:
refImage = np.longlong(reference_image)
sampleImage = np.longlong(sample_image)
conv = refImage * sampleImage
sumof_conv = np.longlong(np.sum(conv))
squareof_refImage = refImage * refImage
squareof_sampleImage = sampleImage * sampleImage
sumof_squareof_refImage = np.longlong(np.sum(squareof_refImage))
sumof_squareof_sampleImage = np.longlong(np.sum(squareof_sampleImage))
multipleof_matching = sumof_squareof_refImage * sumof_squareof_sampleImage
if multipleof_matching <= 0:
similarity_match_ratio = 0
return similarity_match_ratio
squarerootof_multipleof_matching = math.sqrt(multipleof_matching)
if (sumof_conv >= 0) and (squarerootof_multipleof_matching > 0):
similarity_match_ratio = sumof_conv / squarerootof_multipleof_matching
return similarity_match_ratio
else:
result_of_method = cv2.matchTemplate(sample_image, reference_image, method=algorithm.value)
self.interpolation_range_list[1] = result_of_method[0][0]
similarity_match_ratio = cv2.normalize(self.interpolation_range_list, self.blank_list, 0, 1, cv2.NORM_MINMAX)
return similarity_match_ratio[1]