
Comments
Python is a text based programming language and machines run machine language, therefore before
running any of our code it runs through a piece of software that ignores comments and looks at only
the python code for the first step in translating to machine language.

There is nothing stopping us from running that same code through a different piece of software that
ignores the Python code and looks only at the comments, which opens the door for us to put two
entirely different sets of instructions into the same text file, this is the idea behind documentation
generators. We put comments in our python code in a certain fashion so that an entire website can
be generated documenting the project.

My personal favorite to use is Doxygen --originally for C++ but many more languages including
python have been added to its capabilities, however, for this course we will be using a python speffic
one: pdoc3

It is high on the recommended list from PyPl so to install pdoc3 use pip in a system terminal (cmd,
powershell, bash shell, ...), make sure you install with pdoc3, as the original pdoc behaves differently
and is far less powerful, yet both add the instruction "pdoc" to the same system terminal we call pip
from. (if you're on a Linux or a Mac make sure you use pip3 here instead --see bottom of this page
for Google Colab or Jupyter Notebook instructions).

pip install pdoc3

Then use docstrings (the triple quote marks) as comments to document each project, class, or
module, then in a system terminal run the instruction...

for a Single script to create a Single web page:

pdoc --html -o filepath/output-folder-name filepath/scriptname.py

** the -o parameter is where to put the output, f you navigate to the directory you want to put it in
(such as in the project folder itself) that can be omitted.

Here's an example, this script...

generated this webpage...

Or if you organize your scripts into a single project directory and want a full website:

pdoc --html -o filepath/output-folde-name filepath/project-folder-name

** It is easiest if you navigate into the directory with the project, then just use the dot operator
to say "document stuff in this directory" with the command:

pdoc --html .

Here's a zip file example (https://ivylearn.ivytech.edu/courses/1120010/files/96722114?wrap=1)
(https://ivylearn.ivytech.edu/courses/1120010/files/96722114/download?download_frd=1) using all the
files in the project shown in the atom text editor screenshot above to generate an entire website with
an index page.

https://ivylearn.ivytech.edu/courses/1120010/files/96722114?wrap=1
https://ivylearn.ivytech.edu/courses/1120010/files/96722114/download?download_frd=1

Please do this to document your code this semester, you do not have to submit the website but
feel free to (if you're coding in notebooks special instructions are at the bottom of this page), but
you do have to include these sort of comments include a docstring header with your name, the
assignment, the date, and which version of the Python Language you used to test/debug the
program on so that I can grade it on the correct version of Python. Here's an example, note the extra
space is needed for linebreaks in summary section:

"""
Chris Francis

PyDoc3 Notation Example

(today's date)

Python 3.9.2
"""

Also document any functions/methods and classes in the following format (this is the industry
standard known as "Google Notation" you'll be able to use in another document generator later in
your career, I will also accept "Numpy Notation" in this class, see this page for examples look for
methods named "google" and "numpy" here and expand the source code at the bottom of that
function: https://pdoc3.github.io/pdoc/doc/pdoc/test/example_pkg/#gsc.tab=0
(https://pdoc3.github.io/pdoc/doc/pdoc/test/example_pkg/#gsc.tab=0)).

def double(x):
 """
 This function will return twice as much as the value passed into it
 Args:
 x (int): the number that needs to be doubled
 Returns:
 the doubled value of what was passed in
 """
 return 2 * x

Here's that example above in pictures:

https://pdoc3.github.io/pdoc/doc/pdoc/test/example_pkg/#gsc.tab=0

Google Colab Instructions:
Here's what I have found works in Google Colab for this (Jupyter Notebooks online will follow same
steps but hosted locally will have direct access to downloads folder so use that instead of dot in step
3), note there's a cell above the screenshot with.

pip install pdoc3

then the four step process shown in image below

1. when program is finished download as .py file

2. immediately reupload that file to the session storage (file folder icon on left navigation, close and
reopen to refresh view)

3. run pdoc with the ! symbol so notebook knows it's a system command not python code, and dot
operator for location

!pdoc --html .

4. download the html files before ending the session (google will clear session storage)

