-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmv.jl
366 lines (275 loc) · 8.97 KB
/
mv.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
# operators imported and overridden from Base
import Base: +, -, *, /, ^, |, %, ==, !=, <, >, <<, >>, ~
# functions imported and overridden from Base
# convention: prefix `Base.` should always be present when overriding
# so comment the following will still work
import Base: show,convert, getproperty, propertynames, setproperty!
if isdefined(Base, :hasproperty) # Julia 1.2
import Base: hasproperty
end
import Base: abs, inv, adjoint, exp, getindex
export Mv
export norm, rev, dual, involute, proj, refl, rot, exp_with_hint, scalar, even, odd
# export \cdot, \wedge, \intprod, \intprodr, \odot, \boxtimes, \circledast, \times
export +, -, *, /, ^, |, %, ==, !=, <, >, <<, >>, ~, ⋅, ∧, ⨼, ⨽, ⊙, ⊠, ⊛, ×
# Operator precedence: they have the same precedence, unlike in math
# julia> for op ∈ [:* :⋅ :∧ :⨼ :⨽ :⊙ :⊠ :⊛ :×]; println(String(op), " ", Base.operator_precedence(op)) end
# * 13
# ⋅ 13
# ∧ 13
# ⨼ 13
# ⨽ 13
# ⊙ 13
# ⊠ 13
# ⊛ 13
# × 13
# experimental export \bar\times
# export ×̄
# \^-\^1
@define_postfix_symbol(⁻¹)
# # \^T
# @define_postfix_symbol(ᵀ)
# \^x
@define_postfix_symbol(ˣ)
# \doublepipe
@define_postfix_symbol(ǂ)
# \_+
@define_postfix_symbol(₊)
# \_-
@define_postfix_symbol(₋)
# \bot
# @define_postfix_symbol(⊥)
@doc raw"""
A wrapper class for `galgebra.mv.Mv`:
- all methods of `galgebra.mv.Mv` are delegated and can be called like in Python.
- enhanced with operator overriding and extra methods.
- automatically supports pretty printing like in Python.
"""
mutable struct Mv
o::PyCall.PyObject
end
@define_show(Mv)
@delegate_properties(Mv, :o)
@delegate_doc(Mv)
"Addition."
@define_op(Mv, +, __add__)
"Subtraction."
@define_op(Mv, -, __sub__)
@doc raw"""
Geometric product.
``A * B \equiv A B``.
"""
@define_op(Mv, *, __mul__)
@doc raw"""
Division.
``A / B \equiv A B^{-1}``. Only valid when ``B`` has inverse.
"""
@define_op(Mv, /, __truediv__)
@doc raw"""
Comparisons of equality.
``A = B \equiv \mathrm{simplify}(A - B) = 0``
"""
@define_op(Mv, ==, __eq__)
@doc raw"""
Comparisons of inequality.
Hint: Type ≠ with `\neq`. Alternatively, use `!=`.
``A \neq B \equiv \mathrm{simplify}(A - B) \neq 0``
"""
@define_op(Mv, ≠, __ne__)
@define_op(Mv, !=, __ne__)
@doc raw"""
Wedge product.
Hint: type ∧ with `\wedge`.
"""
@define_op(Mv, ∧, __xor__)
@doc raw"""
Hestenes' inner product.
Hint: type ⋅ with `\cdot`. Alternatively, use `|`.
``\boldsymbol{A}_{r} \cdot \boldsymbol{B}_{s} \equiv \left\{\begin{array}{lr}{r \text { and } s \neq 0 :} & {\left\langle\boldsymbol{A}_{r} \boldsymbol{B}_{s}\right\rangle_{|r-s|}} \\ {r \text { or } s=0 :} & {0}\end{array}\right.``
"""
@define_op(Mv, ⋅, __or__)
@define_op(Mv, |, __or__)
@doc raw"""Left contraction, i.e. "contraction onto".
Hint: type ⨼ with `\intprod`. Alternatively, use `<`.
``A \rfloor B \equiv \sum\limits_{r, s}\left\langle\langle A\rangle_{r}\langle B\rangle_{s}\right\rangle_{s-r}``
In literature the notation is usually ``A \rfloor B``, but `\rfloor` is reserved by Julia.
"""
@define_op(Mv, ⨼, __lt__)
@define_op(Mv, <, __lt__)
@doc raw"""Right contraction, i.e. "contraction by".
Hint: type ⨽ with `\intprodr`. Alternatively, use `>`.
``A \lfloor B \equiv \sum\limits_{r, s}\left\langle\langle A\rangle_{r}\langle B\rangle_{s}\right\rangle_{r-s}``
In literature the notation is usually ``A \lfloor B``, but `\lfloor` is reserved by Julia.
"""
@define_op(Mv, ⨽, __gt__)
@define_op(Mv, >, __gt__)
@doc raw"""Commutator product.
Hint: type ⊠ with `\boxtimes`. Alternatively, use `>>`.
``A \underline{\times} B \equiv \dfrac{1}{2}(AB-BA)``.
"""
@define_op(Mv, ⊠, __rshift__)
@define_op(Mv, >>, __rshift__)
@doc raw"""Anti-commutator product.
Hint: type ⊙ with `\odot`. Alternatively, use `<<`.
``A \bar{\times} B \equiv \dfrac{1}{2}(AB+BA)``.
"""
@define_op(Mv, ⊙, __lshift__)
@define_op(Mv, <<, __lshift__)
# # experimental symbol for anti-comutator product: \bar\times
# A×̄B = (AB+BA)/2
# @define_op(Mv, ×̄, __lshift__)
@doc raw"""
Cross product for vectors in 3D.
"""
@define_op_with_impl(Mv, ×, mv.cross(x, y))
@doc raw"""Scalar product.
Hint: type ⊛ with `\circledast`. Alternatively, use `%`.
``A \circledast B \equiv \langle A B^{\dagger} \rangle``.
In literature the notation is usually ``\ast`` , but it's visually indistinguishable from `*`.
"""
@define_op_with_impl(Mv, ⊛, (x * ~y).scalar())
@define_op_with_impl(Mv, %, x ⊛ y)
"Unary negation."
@define_unary_op(Mv, -, __neg__)
@doc raw"""
Norm.
`norm(A)` = `A.norm()` ``\equiv \left\lVert A \right\rVert \equiv \sqrt{A \tilde{A}}``
Alternatively:
- `A.norm(hint="+")` ``\equiv \sqrt{A \tilde{A}}``
- `A.norm(hint="-")` ``\equiv \sqrt{- A \tilde{A}}``
- `A.norm(hint="0")` ``\equiv \sqrt{\left| A \tilde{A} \right|}``
Only valid when the result is a scalar.
"""
@define_unary_op(Mv, norm, norm)
@define_unary_op(Mv, Base.abs, norm)
@doc raw"""
Inverse.
`(A)⁻¹ = A^-1 = inv(A) = A.inv()` ``\equiv A^{-1}``
Hint: type ⁻¹ with `\^-\^1`.
"""
@define_unary_op(Mv, Base.inv, inv)
@define_postfix_op(Mv, ⁻¹, Base.inv)
@doc raw"""
Reversion.
`~A = A[:~] = rev(A) = A.rev()` ``\equiv \tilde{A} \equiv A^{\dagger}``
In literature the notation is usually ``\tilde{A}`` or ``A^{\dagger}``, the former is illegal syntax and `\dagger` in the latter is is reserved by Julia.
"""
@define_unary_op(Mv, ~, rev)
@define_unary_op(Mv, rev, rev)
# @deprecated
# @define_postfix_op(Mv, ᵀ, rev)
@doc raw"""
Dual, i.e. orthogonal complement, ``\Lambda^p \to \Lambda^{n-p}``.
`A'` ``\equiv A^{\bot} \equiv A I``
Note: call `Ga.dual_mode(mode)` to globally specify a different dual mode (`I+` is the default):
| dual_mode | ``A^{\bot}`` |
|-----------|--------------|
| `+I` | ``IA`` |
| `-I` | ``-IA`` |
| `I+` | ``AI`` |
| `I-` | ``-AI`` |
| `+Iinv` | ``I^{-1}A`` |
| `-Iinv` | ``-I^{-1}A`` |
| `Iinv+` | ``AI^{-1}`` |
| `Iinv-` | ``-AI^{-1}`` |
"""
@define_unary_op(Mv, Base.adjoint, dual)
@define_unary_op(Mv, dual, dual)
# @define_postfix_op(Mv, ⊥, dual)
@doc raw"""
Grade involution.
`(A)ˣ = A[:*] = involute(A)` ``\equiv A_+ - A_- \equiv`` `A.even() - A.odd()`
Hint: type ˣ with `\^x`.
In literature the notation is usually ``A^{*}``.
"""
@define_unary_op_with_impl(Mv, involute, x.even() - x.odd())
@define_postfix_op(Mv, ˣ, involute)
@doc raw"""
Clifford conjugate.
`(A)ǂ = A[:ǂ]` ``\equiv A^{*\dagger}``
Hint: type ǂ with `\doublepipe`.
In literature the notation is usually ``A^{\ddagger}``, but `\ddagger` is reserved by Julia.
"""
@define_unary_op_with_impl(Mv, Base.conj, involute(x).rev())
@define_postfix_op(Mv, ǂ, Base.conj)
@doc raw"""
Projection.
`proj(B, A)` `` \equiv P_{B}(A) \equiv`` `A.project_in_blade(B)`
Only valid if B is a blade.
"""
@define_op_with_impl(Mv, proj, mv.proj(x, y))
@doc raw"""
Reflection.
`refl(B, A)` `` \equiv \mathrm{Refl}_{B}(A) \equiv`` `A.reflect_in_blade(B)`
Only valid if B is a blade.
"""
@define_op_with_impl(Mv, refl, mv.refl(x, y))
@doc raw"""
Rotation.
Rotate the multivector `A` by the 2-blade `itheta`.
`rot(itheta, A)` ``\equiv A e^{I \theta} \equiv`` `A.rotate_multivector(itheta)`
"""
@define_op_with_impl(Mv, rot, rot_with_hint(x, y))
@pure rot_with_hint(itheta::Mv, A::Mv, hint::AbstractString="-") = mv.rot(itheta, A, hint)
@doc raw"Natural base exponential of X: ``e^X``"
@define_unary_op_with_impl(Mv, Base.exp, exp_with_hint(x))
@pure exp_with_hint(x::Mv, hint::AbstractString="-") = mv.exp(x, hint)
@doc raw"""
The `i`-th grade part.
`A[i] = A.grade(i)` ``\equiv \langle A B^{\dagger} \rangle_i``
"""
@pure Base.getindex(x::Mv, i::Integer) = x.grade(i)
@pure function Base.getindex(x::Mv, sym::Symbol)
if sym == :+
even(x)
elseif sym == :-
odd(x)
elseif sym == :~
rev(x)
elseif sym == :⁻¹
inv(x)
elseif sym == :*
involute(x)
elseif sym == :ǂ
conj(x)
else
throw(DomainError(x, "argument can only be one of :+, :-, :~, :⁻¹, :*, :ǂ"))
end
end
@doc raw"""
Scalar (grade-0) part.
`scalar(A) = A.scalar()` ``\equiv \langle A B^{\dagger} \rangle \equiv \langle A B^{\dagger} \rangle_0``
Note: it returns a SymPy expression unlike A[0] which returns a Mv object
"""
@define_unary_op(Mv, scalar, scalar)
@doc raw"""
Even-grade part.
`A[:+] = (A)₊ = even(A) = A.even()` ``\equiv A_+``
"""
@define_unary_op(Mv, even, even)
@define_postfix_op(Mv, ₊, even)
@doc raw"""
Odd-grade part.
`A[:-] = (A)₋ = odd(A) = A.odd()` ``\equiv A_-``
"""
@define_unary_op(Mv, odd, odd)
@define_postfix_op(Mv, ₋, odd)
@define_lop(Mv, Number, +, __add__)
@define_rop(Mv, Number, +, __radd__)
@define_lop(Mv, Number, -, __sub__)
@define_rop(Mv, Number, -, __rsub__)
@define_lop(Mv, Number, *, __mul__)
@define_rop(Mv, Number, *, __rmul__)
@define_lop(Mv, Number, /, __truediv__)
@define_rop(Mv, Number, /, __rdiv__)
@define_lop(Mv, Number, ==, __eq__)
@define_lop(Mv, Number, !=, __ne__)
@pure function ^(x::Mv, y::Integer)
if y < 0
x.__pow__(abs(y)).inv()
elseif y == 0
1
else
x.__pow__(y)
end
end